Pregunta
upstudy study bank question image url

\( c_{1}+5 b+7 c \) \( 4 x^{2}+2 \) and \( 2 x^{2}+2 x+1 \) \( x+4 \) and \( 3 x+2 x^{2} \) \( 6 x^{2}-x+4 \) and \( -3 x^{2}-52 \) \( 4^{2}+4 y+4 \) and \( y^{2}-5 y-3 \) 44 and \( 8(-2 \)

Ask by Guzman Maxwell. in South Africa
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified results for each pair: 1. \( c_{1}+5 b+7 c \) - No further simplification needed. 2. \( 4 x^{2}+2 = 2(2x^{2}+1) \) and \( 2 x^{2}+2 x+1 = (x+1)^{2} \). 3. \( x+4 \) - No further simplification needed, \( 3 x+2 x^{2} = x(2x+3) \). 4. \( 6 x^{2}-x+4 \) - No further simplification needed, \( -3 x^{2}-52 = -3(x^{2}+\frac{52}{3}) \). 5. \( 4^{2}+4 y+4 = 20 + 4y \) and \( y^{2}-5 y-3 \) - No further simplification needed. 6. \( 44 \) and \( 8(-2) = -16 \).

Solución

It seems like you have provided a list of expressions and equations. To assist you effectively, I will analyze each pair of expressions and perform the necessary calculations or simplifications. Let's go through them one by one. 1. **Expression:** \( c_{1}+5 b+7 c \) - This expression is already in its simplest form. No further action is needed. 2. **Expressions:** \( 4 x^{2}+2 \) and \( 2 x^{2}+2 x+1 \) - We can simplify or compare these two expressions. Let's check if they can be factored or simplified. 3. **Expressions:** \( x+4 \) and \( 3 x+2 x^{2} \) - We can also simplify or compare these two expressions. 4. **Expressions:** \( 6 x^{2}-x+4 \) and \( -3 x^{2}-52 \) - We can simplify or compare these two expressions as well. 5. **Expressions:** \( 4^{2}+4 y+4 \) and \( y^{2}-5 y-3 \) - We can simplify or compare these two expressions. 6. **Expression:** \( 44 \) and \( 8(-2) \) - We can calculate \( 8(-2) \) and compare it with \( 44 \). Now, I will perform the necessary calculations for the pairs of expressions. Let's start with the second pair and continue through the list. I'll calculate the second pair of expressions first. ### Step 2: Simplifying \( 4 x^{2}+2 \) and \( 2 x^{2}+2 x+1 \) 1. **For \( 4 x^{2}+2 \):** - This can be factored as \( 2(2x^{2}+1) \). 2. **For \( 2 x^{2}+2 x+1 \):** - This can be factored as \( (x+1)^{2} \). Now, let's perform the calculations for the next pairs. ### Step 3: Simplifying \( x+4 \) and \( 3 x+2 x^{2} \) 1. **For \( x+4 \):** - This is already in its simplest form. 2. **For \( 3 x+2 x^{2} \):** - This can be factored as \( x(2x+3) \). Next, let's simplify the fourth pair. ### Step 4: Simplifying \( 6 x^{2}-x+4 \) and \( -3 x^{2}-52 \) 1. **For \( 6 x^{2}-x+4 \):** - This is already in its simplest form. 2. **For \( -3 x^{2}-52 \):** - This can be factored as \( -3(x^{2}+ \frac{52}{3}) \). Now, let's simplify the fifth pair. ### Step 5: Simplifying \( 4^{2}+4 y+4 \) and \( y^{2}-5 y-3 \) 1. **For \( 4^{2}+4 y+4 \):** - This can be simplified to \( 16 + 4y + 4 = 20 + 4y \). 2. **For \( y^{2}-5 y-3 \):** - This is already in its simplest form. Finally, let's calculate the last pair. ### Step 6: Calculating \( 44 \) and \( 8(-2) \) 1. **Calculate \( 8(-2) \):** - \( 8(-2) = -16 \). Now, let's summarize the results: 1. \( c_{1}+5 b+7 c \) - No simplification needed. 2. \( 4 x^{2}+2 = 2(2x^{2}+1) \) and \( 2 x^{2}+2 x+1 = (x+1)^{2} \). 3. \( x+4 \) - No simplification needed, \( 3 x+2 x^{2} = x(2x+3) \). 4. \( 6 x^{2}-x+4 \) - No simplification needed, \( -3 x^{2}-52 = -3(x^{2}+ \frac{52}{3}) \). 5. \( 4^{2}+4 y+4 = 20 + 4y \) and \( y^{2}-5 y-3 \) - No simplification needed. 6. \( 44 \) and \( 8(-2) = -16 \). If you need further calculations or specific operations on any of these expressions, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that polynomial expressions, like \( c_{1}+5b+7c \), are not just abstract concepts? They find real-world applications in fields such as engineering and economics! For instance, engineers use polynomial equations to model the behavior of structures, helping them predict how buildings will respond to forces like wind and earthquakes. Pretty cool, right? When combining polynomials, a common mistake is forgetting to combine like terms or misaligning their degrees during addition or subtraction. To avoid this pitfall, always arrange the terms by their degree before you start combining them. Keeping a clear structure will make your life so much easier—and your answers that much more accurate!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad