6) Find \( (f \circ g)(x) \) when \( f(x)=-3 x^{2} \) and \( g(x)=7 x+4 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find \( (f \circ g)(x) \), we first need to substitute the function \( g(x) \) into \( f(x) \). We know that \( f(x) = -3x^2 \) and \( g(x) = 7x + 4 \). 1. First, we find \( g(x) \): \[ g(x) = 7x + 4 \] 2. Next, substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f(7x + 4) = -3(7x + 4)^2 \] 3. Now, we need to expand \( (7x + 4)^2 \): \[ (7x + 4)^2 = 49x^2 + 56x + 16 \] 4. Substitute this back into \( f(g(x)) \): \[ f(7x + 4) = -3(49x^2 + 56x + 16) \] 5. Distribute the \(-3\): \[ f(7x + 4) = -147x^2 - 168x - 48 \] So, \( (f \circ g)(x) = -147x^2 - 168x - 48 \).
