Pregunta
upstudy study bank question image url

\( \begin{array}{l}-6 x+3 y=3 \\ -3 x-7 y=-41 \\ \text { Is }(2,5) \text { a solution to the system above? } \bigcirc \text { True False } \\ \text { Submit Question }\end{array} \)

Ask by King Mills. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(2, 5) is a solution to the system.

Solución

To determine if (2, 5) is a solution to the system of equations, substitute x = 2 and y = 5 into each equation. First equation: –6(2) + 3(5) = –12 + 15 = 3 Since the left-hand side equals the right-hand side (3), the first equation is satisfied. Second equation: –3(2) – 7(5) = –6 – 35 = –41 Since the left-hand side equals the right-hand side (–41), the second equation is also satisfied. Since both equations are true with x = 2 and y = 5, the point (2, 5) is indeed a solution to the system. Answer: True.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine if (2, 5) is a solution to the system, we must substitute \(x = 2\) and \(y = 5\) into both equations. For the first equation: \[ -6(2) + 3(5) = -12 + 15 = 3 \] This holds true. For the second equation: \[ -3(2) - 7(5) = -6 - 35 = -41 \] This also holds true. Since both equations are satisfied, the answer is \(\text{True}\). Let's explore a bit about how to solve systems of linear equations: You can use substitution or elimination methods! Substitution involves solving one equation for one variable and plugging in that value into the other equation. The elimination method focuses on adding or subtracting equations to eliminate one variable, making it easier to solve for the other. For further reading, check out "Elementary Algebra" by Harold R. Jacobs! This classic text not only covers solutions to systems of equations but also dives into graphing, inequalities, and more, making it an excellent resource for budding mathematicians.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad