The volume \( V \) enclosed by a rectangular solid with length \( I \), width \( w \), and height \( h \) is \( V=l \cdot w \cdot h \). Find \( V \) if: \( I=42 \) yards, \( w=\frac{5}{2} \) yards, and \( h=\frac{8}{3} \) yards The volume is \( \square \) cubic yards.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the volume \( V \) of the rectangular solid, we simply need to plug in the given dimensions into the formula \( V = l \cdot w \cdot h \). Given: - \( l = 42 \) yards - \( w = \frac{5}{2} \) yards - \( h = \frac{8}{3} \) yards Now, we calculate: \[ V = 42 \cdot \frac{5}{2} \cdot \frac{8}{3} \] First, calculate \( \frac{5}{2} \cdot \frac{8}{3} \): \[ \frac{5 \cdot 8}{2 \cdot 3} = \frac{40}{6} = \frac{20}{3} \] Now, multiply this by \( 42 \): \[ V = 42 \cdot \frac{20}{3} = \frac{840}{3} = 280 \] Thus, the volume \( V \) is \( 280 \) cubic yards.
