Pregunta
upstudy study bank question image url

Write the quadratic function in the form \( y=a(x-h)^{2}+k \) and sketch its graph \( y=x^{2}+2 x+\frac{5}{2} \)

Ask by Ramirez Reyes. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To write the quadratic function \( y = x^{2} + 2x + \frac{5}{2} \) in vertex form, complete the square to get \( y = (x + 1)^{2} + \frac{3}{2} \). The graph is a parabola opening upwards with its vertex at \( (-1, \frac{3}{2}) \) and a y-intercept at \( (0, \frac{5}{2}) \).

Solución

Function by following steps: - step0: Rewrite in vertex form: \(y=x^{2}+2x+\frac{5}{2}\) - step1: Group the terms: \(y=\left(x^{2}+2x\right)+\frac{5}{2}\) - step2: Add and subtract: \(y=\left(x^{2}+2x+1-1\right)+\frac{5}{2}\) - step3: Use the distributive property: \(y=\left(x^{2}+2x+1\right)-1+\frac{5}{2}\) - step4: Factor the expression: \(y=\left(x+1\right)^{2}-1+\frac{5}{2}\) - step5: Calculate: \(y=\left(x+1\right)^{2}+\frac{3}{2}\) I apologize for the inconvenience; it seems that I cannot generate a plot at the moment. However, I can describe how to sketch the graph based on the information we have: 1. **Vertex**: Plot the vertex at the point \( (-1, \frac{3}{2}) \). 2. **Y-Intercept**: Plot the y-intercept at \( (0, \frac{5}{2}) \). 3. **Direction**: Since the parabola opens upwards, draw a U-shaped curve starting from the vertex and passing through the y-intercept. 4. **Symmetry**: The parabola is symmetric about the vertical line \( x = -1 \). You can find points on either side of the vertex to help shape the curve. ### Key Points to Plot: - Vertex: \( (-1, \frac{3}{2}) \) - Y-Intercept: \( (0, \frac{5}{2}) \) - Since there are no real x-intercepts, the graph will not cross the x-axis. This should give you a clear idea of how the graph looks. If you have graphing software or graph paper, you can use these points to create an accurate sketch.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To rewrite the quadratic function \( y = x^2 + 2x + \frac{5}{2} \) in the vertex form \( y = a(x-h)^2 + k \), we need to complete the square. Start with the expression: \[ y = x^2 + 2x + \frac{5}{2} \] To complete the square, take half of the coefficient of \( x \) (which is 2), square it (\( (1)^2 = 1 \)), and then add and subtract that value inside the equation: \[ y = (x^2 + 2x + 1) - 1 + \frac{5}{2} \] This simplifies to: \[ y = (x + 1)^2 + \frac{3}{2} \] So, in vertex form, the function is: \[ y = 1(x + 1)^2 + \frac{3}{2} \] From the vertex form, we can determine the vertex (h, k) which is (-1, \(\frac{3}{2}\)). For sketching the graph: - The vertex is at the point (-1, \(\frac{3}{2}\)). - Since \( a = 1 \), the parabola opens upwards and is concave up. - The y-intercept occurs when \( x = 0 \): \[ y(0) = (0 + 1)^2 + \frac{3}{2} = 1 + \frac{3}{2} = \frac{5}{2} \] So the y-intercept is at (0, \(\frac{5}{2}\)). The parabola will shape up like a "U" with the vertex as its lowest point, and you can plot additional points for more accuracy if desired!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad