Match the value of the discriminant with the number of solutions Value of Discriminant Number of Solutions \( \begin{array}{ll}\boxed{-v} 48 & \text { a. } 2 \text { Real Solutions } \\ \boxed{-v}-40 & \text { b. } 1 \text { Real Solution } \\ \text { c. No Real Solution }\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
When the discriminant is negative, as in the cases of \( -48 \) and \( -40 \), it indicates that the quadratic equation does not intersect the x-axis, leading us to option (c) No Real Solution. But if the discriminant is equal to zero, we'd have option (b) 1 Real Solution. The only time we see option (a) 2 Real Solutions is when the discriminant is positive. So for the values provided: - \( -48 \): c. No Real Solution - \( -40 \): c. No Real Solution
