entist fills a container with s0a water. The container has dimensions \( 30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 40 \mathrm{~cm} \). density of sea water is \( 1020 \mathrm{~kg} / \mathrm{m}^{3} \). Calculate the mass of the sea water in the centainer.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the mass of the sea water in the container, we first need to calculate the volume of the container. The volume \( V \) is given by the formula: \[ V = \text{length} \times \text{width} \times \text{height} \] Converting the dimensions to meters: - Length = 30 cm = 0.30 m - Width = 30 cm = 0.30 m - Height = 40 cm = 0.40 m Now we calculate the volume: \[ V = 0.30 \, \text{m} \times 0.30 \, \text{m} \times 0.40 \, \text{m} = 0.036 \, \text{m}^3 \] Next, to find the mass \( m \) of the seawater, we can use the formula: \[ m = \text{density} \times \text{volume} \] The density of seawater given is \( 1020 \, \text{kg/m}^3 \). Now plug in the values: \[ m = 1020 \, \text{kg/m}^3 \times 0.036 \, \text{m}^3 = 36.72 \, \text{kg} \] Therefore, the mass of the sea water in the container is approximately \( 36.72 \, \text{kg} \).
