Pregunta
upstudy study bank question image url

(2) \( \left(\frac{2}{m^{2}-m}-\frac{2 m}{1-m^{2}}\right) \cdot \frac{2 m^{2}+2 m}{m^{3}-1}+\frac{4}{m-1}= \)

Ask by Moreno Harrington. in Bosnia and Herzegovina
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The expression simplifies to \( \frac{4m}{(m - 1)^2} \).

Solución

We wish to simplify   [2/(m² – m) – 2m/(1 – m²)] · [(2m² + 2m)/(m³ – 1)] + 4/(m – 1). Follow these steps: 1. Write the first bracket in a common form.  a. Notice that    m² – m = m(m – 1).  b. Also, note that    1 – m² = –(m² – 1) = –[(m – 1)(m + 1)].  c. Thus, we have    2/(m² – m) = 2/[m(m – 1)]    and    2m/(1 – m²) = 2m/[-(m – 1)(m + 1)] = –2m/[(m – 1)(m + 1)].  d. So the first bracket becomes:    2/[m(m – 1)] – [–2m/((m – 1)(m + 1))] = 2/[m(m – 1)] + 2m/[(m – 1)(m + 1)]. 2. Factor out 2/(m – 1):   2/[m(m – 1)] + 2m/[(m – 1)(m + 1)] = 2/(m – 1) · [1/m + m/(m + 1)].  Combine the terms in the bracket:   1/m + m/(m + 1) = ( (m + 1) + m² )/[m(m + 1)] = (m² + m + 1)/[m(m + 1)].  So the first bracket simplifies to:   2(m² + m + 1)/[m(m + 1)(m – 1)]. 3. Simplify the second factor.  a. Write the numerator:   2m² + 2m = 2m(m + 1).  b. Factor the denominator. Since m³ – 1 is a difference of cubes,   m³ – 1 = (m – 1)(m² + m + 1).  c. Therefore, the second factor becomes:   [2m(m + 1)]/[(m – 1)(m² + m + 1)]. 4. Multiply the two simplified factors:  We have   [2(m² + m + 1)/{m(m + 1)(m – 1)}] · [2m(m + 1)/{(m – 1)(m² + m + 1)}].  Multiply the numerators and the denominators:   Numerator: 2·2·m·(m + 1)·(m² + m + 1) = 4m(m + 1)(m² + m + 1),   Denominator: m(m + 1)(m – 1) · (m – 1)(m² + m + 1) = m(m + 1)(m² + m + 1)(m – 1)².  Cancel the common factors m, (m + 1) and (m² + m + 1):   Result = 4/(m – 1)². 5. Now include the remaining term:  The whole expression is now   4/(m – 1)² + 4/(m – 1).  To combine these fractions use the common denominator (m – 1)²:   = [4 + 4(m – 1)]/(m – 1)²   = [4 + 4m – 4]/(m – 1)²   = 4m/(m – 1)². Therefore, the given expression simplifies to:   4m/(m – 1)².

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify the given expression \( \left(\frac{2}{m^{2}-m}-\frac{2 m}{1-m^{2}}\right) \cdot \frac{2 m^{2}+2 m}{m^{3}-1}+\frac{4}{m-1} \), we can follow these steps: 1. **Factor the components**: - Notice that \( m^2 - m = m(m-1) \). - The term \( 1 - m^2 = -(m^2 - 1) = -(m-1)(m+1) \). - The term \( m^3 - 1 = (m-1)(m^2 + m + 1) \). 2. **Rewrite the expression**: - The first term becomes: \[ \frac{2}{m(m-1)} - \frac{2m}{-(m-1)(m+1)} = \frac{2}{m(m-1)} + \frac{2m}{(m-1)(m+1)}. \] - Combine using a common denominator: - The common denominator is \( m(m-1)(m+1) \). - Both fractions can be expressed with this common denominator. 3. **Compute the combined first term**: \[ \frac{2(m+1) + 2m^2}{m(m-1)(m+1)} = \frac{2m^2 + 2m + 2}{m(m-1)(m+1)} = \frac{2(m^2 + m + 1)}{m(m-1)(m+1)}. \] 4. **Multiply by the second term**: - We then multiply by \( \frac{2m^2 + 2m}{m^3 - 1} = \frac{2m(m+1)}{(m-1)(m^2 + m + 1)} \). - So we have: \[ \left( \frac{2(m^2 + m + 1)}{m(m-1)(m+1)} \right) \cdot \left( \frac{2m(m+1)}{(m-1)(m^2 + m + 1)} \right). \] 5. **Simplifying the expression**: - Cancel \( m^2 + m + 1 \) from numerator and denominator: \[ \frac{4m(m+1)}{m(m-1)(m-1)(m+1)} = \frac{4}{(m-1)^2}. \] - Now we have: \[ \frac{4}{(m-1)^2} + \frac{4}{m-1}. \] 6. **Combine** the two fractions: - The common denominator is \( (m-1)^2 \): \[ \frac{4 + 4(m-1)}{(m-1)^2} = \frac{4 + 4m - 4}{(m-1)^2} = \frac{4m}{(m-1)^2}. \] 7. **Final result**: \[ \frac{4m}{(m-1)^2}. \] The final simplified result is: \[ \frac{4m}{(m-1)^2} . \]

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad