Pregunta
upstudy study bank question image url

Part 1 of 2 (8) Points: 0.5 of 1 Save Other than a no solution set, use interval notation to express the solution set and then graph the solution set on a number line. \[ -6 x \geq 42 \] Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is \( \square \) . (Type your answer using interval notation.) B. The solution set is \( \varnothing \). w an example Get more help - Clear all Check answer

Ask by Powers Crawford. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution set is \( (-\infty, -7] \).

Solución

We start with the inequality: -6x ≥ 42. Step 1: Divide both sides by -6. Remember that when you divide or multiply an inequality by a negative number, the inequality sign reverses. x ≤ 42/(-6) Step 2: Simplify the right-hand side: 42/(-6) = -7 So the solution is: x ≤ -7 In interval notation, the solution set is: (-∞, -7] To graph on a number line, draw a closed circle at -7 and shade the line to the left (indicating all numbers less than or equal to -7).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the inequality \(-6x \geq 42\), first divide both sides by -6, remembering to reverse the inequality sign. This gives you: \[ x \leq -7 \] In interval notation, the solution set is \((-\infty, -7]\). Now, to graph this on a number line: Draw a line and mark the point at -7 with a closed dot (to indicate that -7 is included in the solution set). Then shade everything to the left of -7 to indicate all the numbers less than or equal to -7 are included in the solution. So, the answer is: A. The solution set is \((-\infty, -7]\).

Latest Algebra Questions

phrase I. The difference between three times \( x \) and fifteen is greater than or equal to five 2. Five more than sixteen times \( x \) is less than or equal to six 3. Three more than two times \( x \) is less than seven \( \square \) 4. Five less than four times \( x \) is less than or equal to sixteen 5. Six times the sum of \( x \) and twelve is less than fourteen 6. The difference between fifteen and two times \( x \) is greater than five 7. The difference between eleven and four times \( x \) is greater than or equal to three 8. The sum of negative three times \( x \) and five is less than or equal to negative four 9. Fourteen less than five times \( x \) is at most eleven \( \qquad \) 10. Twice the sum of nine and \( x \) is greater than twenty II. Ten less than three times \( x \) is greater than eleven 12. Thirteen plus five times \( x \) is no more than thirty 13. Thirteen more than three times \( x \) is no more than the opposite of eleven 14. Half of the sum of \( x \) and six is no less than twenty 15. The difference between negative five times \( x \) and eight is greater than twelve. Solve only your inequalities! Look for your answer at the bottom. \[ \begin{array}{ll} N \quad 2 x+3 \leq 7 & E \\ C & 14-5 x \leq 11 \\ \text { C } 15-2 x>5 & \text { R } \\ F(9+x)>20 \\ E \quad 1 / 2 x+6 x \leq 30 & \text { D } \end{array} 6(x+12)<141 \] \[ \text { L } 5 x-14 \leq 11 \quad H \quad-3 x-5<-4 \] \[ \text { U } 3 x-15 \geq 5 \quad \text { A } 1 / 2(x+6) \geq 20 \] \[ E \quad 6(x-12)>14 \backslash \text { H } \quad 11-4 x \geq 3 \] \[ 3 x-10>11 \quad 0 \quad-5 x-8>12 \] \[ \vee 16 x+5<6 \quad \& \quad 3 x+13 \leq-11 \] \[ \text { Y } 4 x-5 \geq 16 \quad \text { \& } 16 x+5 \leq 6 \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad