\( 2 \cos \hat{A}-\cos \hat{B} \) if \( \hat{A}=110^{\circ} \) and \( \hat{B}=50^{\circ} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To solve \( 2 \cos \hat{A}-\cos \hat{B} \) with \( \hat{A}=110^{\circ} \) and \( \hat{B}=50^{\circ} \), we first find the cosine values: 1. Calculate \( \cos(110^{\circ}) \): \[ \cos(110^{\circ}) \approx -0.342 \] 2. Calculate \( \cos(50^{\circ}) \): \[ \cos(50^{\circ}) \approx 0.643 \] Now, substitute these values into the expression: \[ 2 \cos(110^{\circ}) - \cos(50^{\circ}) = 2(-0.342) - 0.643 \] Calculating this gives: \[ = -0.684 - 0.643 = -1.327 \] Thus, \( 2 \cos \hat{A}-\cos \hat{B} \approx -1.327 \).
