Pregunta
upstudy study bank question image url

Rosa wants to invest \( \$ 4400 \) in a savings account that pays \( 7.1 \% \) simple interest. How long will it take for this investment to double in value? Round your answer to the nearest tenth.

Ask by Daniel Moran. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It will take approximately 14.1 years for Rosa's investment to double in value.

Solución

To determine how long it will take for Rosa's investment to double in value with simple interest, we can use the formula for simple interest: \[ A = P(1 + rt) \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( t \) is the time the money is invested for in years. In this case: - \( P = 4400 \) - \( A = 2 \times 4400 = 8800 \) (since we want to double the investment) - \( r = 7.1\% = 0.071 \) We need to solve for \( t \): \[ 8800 = 4400(1 + 0.071t) \] Now, let's simplify and solve for \( t \): 1. Divide both sides by \( 4400 \): \[ 2 = 1 + 0.071t \] 2. Subtract 1 from both sides: \[ 1 = 0.071t \] 3. Divide both sides by \( 0.071 \): \[ t = \frac{1}{0.071} \] Now, let's calculate \( t \). Calculate the value by following steps: - step0: Calculate: \(\frac{1}{0.071}\) - step1: Convert the expressions: \(\frac{1}{\frac{71}{1000}}\) - step2: Multiply by the reciprocal: \(\frac{1000}{71}\) Calculating \( t \): \[ t \approx 14.084507 \] Rounding this to the nearest tenth, we find: \[ t \approx 14.1 \] Thus, it will take approximately **14.1 years** for Rosa's investment to double in value at a simple interest rate of \( 7.1\% \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out how long it will take for Rosa's investment to double in value with simple interest, we can use the simple interest formula: \[ A = P(1 + rt) \] where: - \( A \) is the total amount of money accumulated after time \( t \), - \( P \) is the principal amount (initial investment), - \( r \) is the rate of interest (in decimal), and - \( t \) is the time in years. Since Rosa wants to double her investment of \( \$ 4400 \), the total amount \( A \) will be \( \$ 8800 \). The interest rate \( r \) is \( 7.1\% \) or \( 0.071 \) in decimal. Setting up the equation: \[ 8800 = 4400(1 + 0.071t) \] Dividing both sides by \( 4400 \): \[ 2 = 1 + 0.071t \] Subtracting \( 1 \) from both sides gives: \[ 1 = 0.071t \] Now, solving for \( t \): \[ t = \frac{1}{0.071} \approx 14.0845 \] Rounding to the nearest tenth, it will take approximately \( 14.1 \) years for Rosa's investment to double in value.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad