Pregunta
upstudy study bank question image url

A bank features a savings account that has an annual percentage rate of \( 3.4 \% \) with interest compounded annually. Maurice deposits \( \$ 3,000 \) into the account. How much money will Maurice have in the account in 1 year? Answer \( =\$ \). Round onswer to the nearest penny. What is the annual percentage yield (APY for the savings account? APY \( =\square \% \) Round to the nearest hundredth of a percent.

Ask by Daniels Logan. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 1 year, Maurice will have $3,102.00 in the account. The annual percentage yield (APY) is 3.40%.

Solución

The account balance after 1 year is calculated as follows:  Final Balance = Principal × (1 + Rate)    = 3000 × (1 + 0.034)    = 3000 × 1.034    = $3102.00 Since the interest is compounded annually, the APY is the same as the annual percentage rate. Therefore, the APY is:  APY = 3.4% Rounded to the nearest hundredth, the APY remains 3.40%. Thus,  Answer = $3102.00  APY = 3.40%

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

After one year, Maurice will have earned interest on his initial deposit of \( \$3,000 \). The formula for calculating the future value with compounded interest is: \[ A = P(1 + r)^n \] where \( P \) is the principal amount (\$3,000), \( r \) is the annual interest rate (0.034), and \( n \) is the number of years (1). Plugging in the numbers: \[ A = 3000(1 + 0.034)^1 = 3000(1.034) = 3102 \] Therefore, the amount in the account after 1 year is \( A = \$3,102.00 \). For the annual percentage yield (APY), it is calculated as: \[ APY = (1 + r)^n - 1 \] For this case: \[ APY = (1 + 0.034)^1 - 1 = 0.034 \] Thus, rounding to the nearest hundredth of a percent, the APY is \( APY = 3.40\% \). In just one year, Maurice has turned his savings into a bit more! It’s like a little money magic. Plus, with APY, he now knows just how much more fruitfully his money can grow!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad