Pregunta
upstudy study bank question image url

Example 7 The depth of water. \( d \) metres, at a port entrance is given by the tunction: \[ d(t)=4.5+1.5 \sin \left(\frac{\pi t}{12}\right) \] where \( t \) is in hours. a Find \( i \) the maximum and if the minimum depth at the port entrance. b A eertain ship needs the depth at the port entrance to be more than 5 metres. The ship can be loaded and unloaded, and in and out of the port, in 9 hours. Assuming that the ship enters the port just as the depth at the entrance passes 5 metres, will the ship be able to exit 9 hours later? How long will it have to spare, or by how many minutes will it miss out?

Ask by Reed Hill. in Australia
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The maximum depth is 6 meters, and the minimum depth is 3 meters. (b) The ship can exit 9 hours later with about 24 minutes to spare.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

To find the maximum and minimum depth at the port entrance, we want to analyze the function \( d(t) = 4.5 + 1.5 \sin\left(\frac{\pi t}{12}\right) \). The sine function has a maximum value of 1 and a minimum value of -1. Therefore, the maximum depth occurs when \( \sin\left(\frac{\pi t}{12}\right) = 1 \): \[ d_{\text{max}} = 4.5 + 1.5 \times 1 = 6 \text{ metres}. \] The minimum depth occurs when \( \sin\left(\frac{\pi t}{12}\right) = -1 \): \[ d_{\text{min}} = 4.5 + 1.5 \times (-1) = 3 \text{ metres}. \] Next, we need to assess whether the ship can exit the port 9 hours after entering. Since the ship enters when \( d(t) = 5 \): \[ 4.5 + 1.5 \sin\left(\frac{\pi t}{12}\right) = 5 \implies \sin\left(\frac{\pi t}{12}\right) = \frac{1}{3}. \] Calculating \( t \) gives us: \[ \frac{\pi t}{12} = \arcsin\left(\frac{1}{3}\right) \Rightarrow t \approx \frac{12}{\pi} \times \arcsin\left(\frac{1}{3}\right) \approx 1.25 \text{ hours.} \] In 9 hours, the total time \( t + 9 \approx 1.25 + 9 = 10.25 \text{ hours}\). Now we need to find the depth at \( t = 10.25 \): \[ d(10.25) = 4.5 + 1.5 \sin\left(\frac{10.25\pi}{12}\right). \] Calculating \( \sin\left(\frac{10.25\pi}{12}\right) \) gives us a depth of approximately \( d(10.25) \approx 5.78 \text{ metres}\). Since 5.78 metres is greater than 5 metres, the ship will be able to exit the port after 9 hours. No minutes to spare! Just like a successful captain, it’s smooth sailing all the way!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad