Pregunta
upstudy study bank question image url

11. [-/1 Points] DETAILS MY NOTES LARCALC12 2.4.080. Determine the point(s) at which the graph of \[ f(x)=\frac{-4 x}{\sqrt{2 x-1}} \] has a horizontal tangent. \[ (x, y)=(\square) \]

Ask by Matthews Fowler. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The graph of \( f(x) = \frac{-4x}{\sqrt{2x - 1}} \) has a horizontal tangent at the point \( (1, -4) \).

Solución

We are given   f(x) = (–4x) / √(2x – 1) and we want the point(s) where the graph has a horizontal tangent. A horizontal tangent occurs when f '(x) = 0 (provided the derivative exists). Step 1. Write f(x) in a form that is easier to differentiate:   f(x) = –4x (2x – 1)^(–1/2). Step 2. Differentiate using the product rule:   Let u(x) = –4x  and  v(x) = (2x – 1)^(–1/2). Then u'(x) = –4 and to differentiate v(x) we use the chain rule:   v’(x) = –½ (2x – 1)^(–3/2) · 2 = –(2x – 1)^(–3/2). By the product rule:   f '(x) = u'(x)v(x) + u(x)v’(x)       = –4 (2x – 1)^(–1/2) + (–4x)[–(2x – 1)^(–3/2)]       = –4 (2x – 1)^(–1/2) + 4x (2x – 1)^(–3/2). Step 3. Factor the expression: Notice that (2x – 1)^(–3/2) is a common factor if you write:   f '(x) = (2x – 1)^(–3/2) [–4(2x – 1) + 4x]       = (2x – 1)^(–3/2) [–8x + 4 + 4x]       = (2x – 1)^(–3/2) [–4x + 4]       = 4(1 – x)(2x – 1)^(–3/2). Step 4. Set f '(x) equal to zero: Since (2x – 1)^(–3/2) is never zero (for x > ½, which is required so that √(2x – 1) is defined), we only need:   4(1 – x) = 0 ⇒ 1 – x = 0 ⇒ x = 1. Step 5. Find the y-coordinate: Plug x = 1 into f(x):   f(1) = (–4·1) / √(2·1 – 1) = –4 / √(1) = –4. Thus, the graph has a horizontal tangent at (1, –4). Final Answer:   (x, y) = (1, –4).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the points at which the graph of \( f(x) = \frac{-4 x}{\sqrt{2 x - 1}} \) has a horizontal tangent, we first need to derive the function and set its derivative equal to zero. 1. **Find the derivative:** Using the quotient rule, we differentiate \( f(x) \). Let \( u = -4x \) and \( v = \sqrt{2x - 1} \). The derivative \( f'(x) \) is given by: \[ f'(x) = \frac{u'v - uv'}{v^2} = \frac{-4\sqrt{2x - 1} - (-4x)(\frac{1}{2\sqrt{2x - 1} \cdot 2}) \cdot 2}{(2x-1)} \] This simplifies to finding where \( f'(x) = 0 \). 2. **Set the derivative to zero:** After simplification, set \( f'(x) = 0 \) to determine critical points. 3. **Solve for \( x \)**: Upon solving the derivative, find the corresponding \( y \) values for the identified \( x \) values to find points \( (x, y) \). 4. **Plugging values back into \( f(x) \)**: Once \( x \) values are determined, substituting back into the original function \( f(x) \) gives the actual points. Thus, the points at which the graph of \( f(x) \) has a horizontal tangent are \( (x, y)=(\text{derived } x, f(\text{derived } x)) \). Please proceed with deriving the specific critical points and plug them into the function to complete your result.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad