Fill in the blanks to make a "perfect square." For example, in fill in 9 and 3 since \[ x^{2}+6 x+\ldots=(x+\square)^{2} \] \( x^{2}+14 x+\square=(x+\square)^{2} \). \( x^{2}-8 x+\square=(x-\square)^{2} \). \( x^{2}-20 x+\square=(x-\square)^{2} \). Note: You can earn partial credit on this problem.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To create a "perfect square," we need to find the value that completes the square for each expression. 1. For \( x^{2} + 14x + \square = (x + \square)^{2} \): We take half of 14, which is 7, and then square it. Thus, filling in the blank, we get: \[ \square = 49 \] So, \( x^{2} + 14x + 49 = (x + 7)^{2} \). 2. For \( x^{2} - 8x + \square = (x - \square)^{2} \): Taking half of -8, which is -4, and squaring it gives: \[ \square = 16 \] Therefore, \( x^{2} - 8x + 16 = (x - 4)^{2} \). 3. For \( x^{2} - 20x + \square = (x - \square)^{2} \): Half of -20 is -10. Squaring that results in: \[ \square = 100 \] Hence, \( x^{2} - 20x + 100 = (x - 10)^{2} \). In summary, the completed squares are: 1. \( \square = 49 \) 2. \( \square = 16 \) 3. \( \square = 100 \)
