Pregunta
upstudy study bank question image url

Fill in the blanks to make a "perfect square." For example, in fill in 9 and 3 since \[ x^{2}+6 x+\ldots=(x+\square)^{2} \] \( x^{2}+14 x+\square=(x+\square)^{2} \). \( x^{2}-8 x+\square=(x-\square)^{2} \). \( x^{2}-20 x+\square=(x-\square)^{2} \). Note: You can earn partial credit on this problem.

Ask by Reese Davison. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Fill in the blanks as follows: - \( x^{2} + 14x + 49 = (x + 7)^{2} \) - \( x^{2} - 8x + 16 = (x - 4)^{2} \) - \( x^{2} - 20x + 100 = (x - 10)^{2} \)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To create a "perfect square," we need to find the value that completes the square for each expression. 1. For \( x^{2} + 14x + \square = (x + \square)^{2} \): We take half of 14, which is 7, and then square it. Thus, filling in the blank, we get: \[ \square = 49 \] So, \( x^{2} + 14x + 49 = (x + 7)^{2} \). 2. For \( x^{2} - 8x + \square = (x - \square)^{2} \): Taking half of -8, which is -4, and squaring it gives: \[ \square = 16 \] Therefore, \( x^{2} - 8x + 16 = (x - 4)^{2} \). 3. For \( x^{2} - 20x + \square = (x - \square)^{2} \): Half of -20 is -10. Squaring that results in: \[ \square = 100 \] Hence, \( x^{2} - 20x + 100 = (x - 10)^{2} \). In summary, the completed squares are: 1. \( \square = 49 \) 2. \( \square = 16 \) 3. \( \square = 100 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad