Now enter those coefficients into the quadratic formula below: \( x=\frac{-2 \square \pm \sqrt{(\boxed{-2})^{2}-4 \cdot \sqrt[1]{11}}}{2 \cdot 1} \) Now simplify the formula: \( x=\frac{\square \pm \sqrt{\square}}{\square} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
Let's plug in the coefficients into the quadratic formula step by step. From the given formula, we have \( a = 1 \), \( b = -2 \), and \( c = -\sqrt[1]{11} \). First, we calculate the discriminant: \[ (-2)^2 - 4 \cdot 1 \cdot (-\sqrt[1]{11}) = 4 + 4\sqrt{11} \] Now we can insert this into the quadratic formula. The full formula now looks like: \[ x = \frac{-(-2) \pm \sqrt{4 + 4\sqrt{11}}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{2 \pm \sqrt{4 + 4\sqrt{11}}}{2} \] Now divide each term inside by 2: \[ x = 1 \pm \frac{\sqrt{4 + 4\sqrt{11}}}{2} \] So, the final simplified form is: \[ x = 1 \pm \frac{\sqrt{4 + 4\sqrt{11}}}{2} \]
