Decide whether each relation defines \( y \) as a function of \( x \). Give the domain and range. \( y=\frac{3}{x-2} \) Does this relation give a function? No Yes
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
Yes, the relation \( y = \frac{3}{x-2} \) defines \( y \) as a function of \( x \). For every input \( x \) (except for \( x = 2 \), where the function is undefined), there is exactly one output \( y \). The domain of this function is all real numbers except \( x = 2 \), which can be expressed as \( (-\infty, 2) \cup (2, \infty) \). The range is also all real numbers except \( y = 0 \), since the function approaches \( 0 \) but never actually reaches it, making the range \( (-\infty, 0) \cup (0, \infty) \).
