Pregunta
upstudy study bank question image url

Implicit differemation 3) \( \frac{x^{2}}{y}=\cos \left(x^{2}\right) \)

Ask by Harrington Hampton. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To find the derivative \( y' \) using implicit differentiation for the equation \( \frac{x^{2}}{y} = \cos(x^{2}) \), follow these steps: 1. **Differentiate both sides with respect to \( x \):** - **Left Side:** \( \frac{d}{dx} \left( \frac{x^{2}}{y} \right) = \frac{2x y - x^{2} y'}{y^{2}} \) - **Right Side:** \( \frac{d}{dx} \left( \cos(x^{2}) \right) = -2x \sin(x^{2}) \) 2. **Set the derivatives equal:** \[ \frac{2x y - x^{2} y'}{y^{2}} = -2x \sin(x^{2}) \] 3. **Solve for \( y' \):** - Multiply both sides by \( y^{2} \): \[ 2x y - x^{2} y' = -2x y^{2} \sin(x^{2}) \] - Isolate \( y' \): \[ -x^{2} y' = -2x y^{2} \sin(x^{2}) - 2x y \] \[ y' = \frac{2x y^{2} \sin(x^{2}) + 2x y}{x^{2}} \] \[ y' = \frac{2y (y \sin(x^{2}) + 1)}{x} \] **Final Derivative:** \[ y' = \frac{2y (y \sin(x^{2}) + 1)}{x} \]

Solución

We start with the equation   (x²)/y = cos(x²). Our goal is to differentiate both sides with respect to x, remembering that y is a function of x. Step 1. Differentiate the left-hand side (LHS): The left-hand side is (x²)/y, a quotient of x² and y. Using the quotient rule,   d/dx[(x²)/y] = [y · d/dx(x²) – x² · d/dx(y)] / y². Since d/dx(x²) = 2x and d/dx(y) = y' (using implicit differentiation),   d/dx[(x²)/y] = [y · 2x – x² · y'] / y². Step 2. Differentiate the right-hand side (RHS): The right-hand side is cos(x²). Using the chain rule,   d/dx[cos(x²)] = –sin(x²) · d/dx(x²) = – sin(x²) · 2x           = – 2x sin(x²). Step 3. Set the derivatives equal to each other:   (2x y – x² y')/y² = –2x sin(x²). Step 4. Solve for y': Multiply both sides by y² to eliminate the denominator:   2x y – x² y' = –2x y² sin(x²). Now, isolate the term containing y':   – x² y' = –2x y² sin(x²) – 2x y. Multiply both sides by –1:   x² y' = 2x y² sin(x²) + 2x y. Notice that 2x y is common in the right-hand side:   x² y' = 2x y (y sin(x²) + 1). Finally, solve for y' by dividing both sides by x² (assuming x ≠ 0):   y' = [2x y (y sin(x²) + 1)]/x² = 2y (y sin(x²) + 1)/x. Thus, the derivative of y with respect to x is   y' = (2y (y sin(x²) + 1))/x. This is the required result obtained by implicit differentiation.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle the equation \( \frac{x^{2}}{y}=\cos \left(x^{2}\right) \) using implicit differentiation, we first rewrite it in a more manageable form. Multiply both sides by \( y \) to get \( x^2 = y \cos(x^2) \). Now, differentiate both sides with respect to \( x \). On the left side, you get \( 2x \), and on the right side, you’ll have to use the product rule, leading to \( \cos(x^2) \frac{dy}{dx} - 2x y \sin(x^2) \). Setting both sides equal will provide a good path to find \( \frac{dy}{dx} \). After finding \( \frac{dy}{dx} \), don't forget to isolate it to clearly express it in terms of \( x \) and \( y \). This implicit differentiation technique is especially handy when dealing with curves defined by equations not easily solvable for \( y \). So, keep that in mind next time you encounter a complicated equation! And remember, one common mistake is forgetting to apply the chain rule while differentiating terms involving \( y \). That’s a surefire way to trip yourself up, so double-check for any sneaky \( \frac{dy}{dx} \) terms hiding out!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad