ind the interior angle and exterior angle of each regular polygon. Round to the nearest tenth if necessary. \( \begin{array}{l}\text { 11. Heptagon } \\ \text { 13-gon } \\ \qquad \begin{array}{l}\text { Interior } \angle= \\ \text { Exterior } \angle=\end{array} \\ \text { Interior } \angle= \\ \text { Exterior } \angle=\square\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the interior and exterior angles of a regular polygon, you can use specific formulas. For an n-sided polygon, the interior angle can be calculated as \( \frac{(n - 2) \times 180}{n} \), and the exterior angle is given by \( \frac{360}{n} \). For a heptagon (7 sides): - **Interior angle**: \( \frac{(7 - 2) \times 180}{7} = \frac{5 \times 180}{7} \approx 128.6° \) (rounded to the nearest tenth) - **Exterior angle**: \( \frac{360}{7} \approx 51.4° \) (rounded to the nearest tenth) For a 13-gon (13 sides): - **Interior angle**: \( \frac{(13 - 2) \times 180}{13} = \frac{11 \times 180}{13} \approx 150.0° \) (rounded to the nearest tenth) - **Exterior angle**: \( \frac{360}{13} \approx 27.7° \) (rounded to the nearest tenth) So, for each polygon: **Heptagon** Interior angle = 128.6° Exterior angle = 51.4° **13-gon** Interior angle = 150.0° Exterior angle = 27.7°
