Pregunta
upstudy study bank question image url

Blood tests of 100 people showed that 56 had the \( A \) antigen and 42 had the \( B \) antigen. Another 26 had neither antigen and so are of type \( O \). How many people are of type \( A B \), having both the \( A \) and \( B \) antigens? Draw and label a Venn diagram that shows the number of people with blood types \( A, B, A B \), and \( O \). How many people are of type \( A B \), having both the \( A \) and \( B \) antigens?

Ask by Elliott Ruiz. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

24 people have both the A and B antigens, making them type AB.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To determine how many people are of type \( AB \) (having both \( A \) and \( B \) antigens), we can use a bit of set theory and basic arithmetic based on the information given. Let's start by summarizing the information: - Total people tested: 100 - People with \( A \) antigen: 56 - People with \( B \) antigen: 42 - People with neither antigen (type \( O \)): 26 From the total of 100 people, 74 people either have \( A \), \( B \), or both \( A \) and \( B \) antigens because: \[ 100 - 26 = 74 \] Now, let's denote: - \( n(A) \) = number of people with antigen \( A \) = 56 - \( n(B) \) = number of people with antigen \( B \) = 42 - \( n(A \cap B) \) = number of people with both antigens \( A \) and \( B \) Using the principle of inclusion-exclusion, we can calculate the number of people with either \( A \) or \( B \) or both: \[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \] Since \( n(A \cup B) = 74 \), we substitute: \[ 74 = 56 + 42 - n(A \cap B) \] Combining and rearranging gives us: \[ 74 = 98 - n(A \cap B) \] \[ n(A \cap B) = 98 - 74 \] \[ n(A \cap B) = 24 \] So, there are **24 people of type \( AB \)**, having both the \( A \) and \( B \) antigens. For the Venn diagram, you would draw two overlapping circles: 1. The left circle represents blood type \( A \), containing 32 (56 total with antigen \( A \) minus 24 for \( AB \)). 2. The right circle represents blood type \( B \), containing 18 (42 total with antigen \( B \) minus 24 for \( AB \)). 3. The intersection of the two circles will hold 24 (type \( AB \)). 4. Outside the circles, you would label 26 people as having blood type \( O \). This clearly shows the distribution of blood types among the 100 people tested!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad