Pregunta
upstudy study bank question image url

(5 POINTS ) 22) Find the present value of an annuity of \( \$ 100 \) paid at the end of each year for 17 years if the interest rate is \( 7 \% \),

Ask by Watkins Craig. in the United States
Dec 11,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The present value of the annuity is approximately \$1010.71.

Solución

To find the present value of an annuity, we can use the present value of annuity formula: \[ PV = P \times \left( \frac{1 - (1 + r)^{-n}}{r} \right) \] Where: - \( PV \) = Present Value of the annuity - \( P \) = Payment amount per period - \( r \) = Interest rate per period - \( n \) = Total number of payments In this case: - \( P = 100 \) - \( r = 0.07 \) (7% as a decimal) - \( n = 17 \) Now, we can plug in the values: \[ PV = 100 \times \left( \frac{1 - (1 + 0.07)^{-17}}{0.07} \right) \] Calculating \( (1 + 0.07)^{-17} \): \[ (1 + 0.07)^{-17} = (1.07)^{-17} \approx 0.2924 \] Now substituting this back into the formula: \[ PV = 100 \times \left( \frac{1 - 0.2924}{0.07} \right) \] Calculating \( 1 - 0.2924 \): \[ 1 - 0.2924 = 0.7076 \] Now substituting this value: \[ PV = 100 \times \left( \frac{0.7076}{0.07} \right) \] Calculating \( \frac{0.7076}{0.07} \): \[ \frac{0.7076}{0.07} \approx 10.1071 \] Finally, calculating the present value: \[ PV = 100 \times 10.1071 \approx 1010.71 \] Thus, the present value of the annuity is approximately: \[ \boxed{1010.71} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the present value of an annuity, you can use the formula: \[ PV = P \times \left(1 - (1 + r)^{-n}\right) / r \] where \( PV \) is the present value, \( P \) is the payment per period (\$100), \( r \) is the interest rate (0.07), and \( n \) is the total number of payments (17). Plugging in the numbers: \[ PV = 100 \times \left(1 - (1 + 0.07)^{-17}\right) / 0.07 \] Calculating this gives: \[ PV = 100 \times \left(1 - (1.07)^{-17}\right) / 0.07 \approx 100 \times 9.107 = 910.70 \] Thus, the present value of the annuity is approximately \$910.70. Want to know a cool trick? If you ever find yourself feeling overwhelmed with calculations, you can always use online financial calculators or spreadsheet applications like Excel. They have built-in functions (like PV function in Excel) that can save you time and ensure you don’t make any calculation errors along the way. A quick note here: When you’re dealing with annuities and rates, ensure you’re consistent in your time periods! If you’re using annual payments, keep your interest rate as an annual rate too. Mixing up payment frequencies and interest rates is a common mistake that can get you off track!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad