rew Ka 84 4) A rectangular prism has a length of 14 centimeters, a height of \( 4 \frac{1}{2} \) centimeters, and a volume of 756 cubic centimeters. What is the width of the prism? centimeters
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find the width of the rectangular prism, we can use the formula for the volume of a prism, which is given by: \[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \] We know the volume (756 cubic centimeters), the length (14 centimeters), and the height (\( 4 \frac{1}{2} \) centimeters, which is equivalent to \( 4.5 \) centimeters). First, we rearrange the formula to solve for width: \[ \text{Width} = \frac{\text{Volume}}{\text{Length} \times \text{Height}} \] Now we plug in the values: \[ \text{Width} = \frac{756}{14 \times 4.5} \] Calculating the denominator, we find: \[ 14 \times 4.5 = 63 \] Now substituting back into the equation gives: \[ \text{Width} = \frac{756}{63} = 12 \] Thus, the width of the prism is \( 12 \) centimeters.
