Pregunta
upstudy study bank question image url

2 Decompose \[ \frac{x^{3}-x+2}{x^{3}-1} \] into partial fractions.

Ask by Garza Frazier. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \frac{x^{3}-x+2}{x^{3}-1} = 1 + \frac{2}{3(x - 1)} - \frac{2x + 7}{3(x^{2} + x + 1)} \]

Solución

We wish to decompose   (x³ – x + 2)/(x³ – 1) into partial fractions. Step 1. Factor the denominator. Notice that   x³ – 1 = (x – 1)(x² + x + 1). Step 2. Compare the degrees of numerator and denominator. Since both have degree 3, we first perform long division. Divide x³ – x + 2 by x³ – 1. The leading terms give a quotient of 1 because   x³ – x + 2 = 1·(x³ – 1) + [(-x + 3)]. Thus the expression becomes   1 + (–x + 3)/(x³ – 1). Step 3. Write the remainder as partial fractions. With the factorization of the denominator we have   (–x + 3)/[(x – 1)(x² + x + 1)]. Assume a decomposition of the form   (–x + 3)/[(x – 1)(x² + x + 1)] = A/(x – 1) + (Bx + C)/(x² + x + 1). Step 4. Multiply both sides by (x – 1)(x² + x + 1) to get   –x + 3 = A(x² + x + 1) + (Bx + C)(x – 1). Expand the right-hand side:   A(x² + x + 1) = A·x² + A·x + A,   (Bx + C)(x – 1) = Bx² + Cx – Bx – C = Bx² + (C – B)x – C. Combine like terms:   A·x² + B·x² = (A + B)x²,   A·x + (C – B)x = (A + C – B)x,   A – C (constant term). So we have:   –x + 3 = (A + B)x² + (A + C – B)x + (A – C). Step 5. Set up equations by equating the corresponding coefficients from both sides: For x²:  A + B = 0         (1) For x:  A + C – B = –1       (2) For the constant term:  A – C = 3      (3) Step 6. Solve the system: From (1):  B = –A. Substitute B = –A into (2):   A + C – (–A) = A + C + A = 2A + C = –1  So,  C = –1 – 2A.    (4) Now substitute C from (4) into (3):   A – (–1 – 2A) = 3  →  A + 1 + 2A = 3  →  3A + 1 = 3, which gives  3A = 2  →  A = 2/3. Then from (1):  B = –2/3. And from (4):  C = –1 – 2(2/3) = –1 – 4/3 = –(3/3 + 4/3) = –7/3. Step 7. Write the full partial fraction decomposition: Recall that we had rewritten   (x³ – x + 2)/(x³ – 1) = 1 + (–x + 3)/[(x – 1)(x² + x + 1)]. Substitute the values of A, B, and C into the partial fractions:   (–x + 3)/[(x – 1)(x² + x + 1)] = (2/3)/(x – 1) + [ (–2/3)x – 7/3 ]/(x² + x + 1). Thus, an acceptable final answer is   1 + (2)/(3(x – 1)) – (2x + 7)/(3(x² + x + 1)). This is the required partial fractions decomposition.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To decompose \(\frac{x^{3}-x+2}{x^{3}-1}\) into partial fractions, we first factor the denominator \(x^{3} - 1\). We can use the formula for the difference of cubes: \[ x^{3} - 1 = (x - 1)(x^2 + x + 1) \] So, we rewrite the expression: \[ \frac{x^{3} - x + 2}{(x - 1)(x^{2} + x + 1)} \] Next, we set up the partial fraction decomposition: \[ \frac{x^{3} - x + 2}{(x - 1)(x^{2} + x + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + x + 1} \] Where \(A\), \(B\), and \(C\) are constants we need to determine. Multiplying through by the denominator \((x - 1)(x^{2} + x + 1)\) gives: \[ x^{3} - x + 2 = A(x^2 + x + 1) + (Bx + C)(x - 1) \] Expanding the right-hand side: \[ A(x^2 + x + 1) + (Bx^2 - Bx + Cx - C) = (A + B)x^2 + (A - B + C)x + (A - C) \] Now, we equate coefficients for the terms from both sides: 1. For \(x^3\): Coefficient is 1 (from \(x^{3}\)) on the left-hand side, but 0 from our setup because there’s no \(x^3\) term on the right side, so we do not have any equation from this. 2. For \(x^2\): \(A + B = 0\) 3. For \(x^1\): \(A - B + C = -1\) 4. For the constant term: \(A - C = 2\) Now we have a system of equations: 1. \(A + B = 0\) (1) 2. \(A - B + C = -1\) (2) 3. \(A - C = 2\) (3) From (1), we get \(B = -A\). Substituting \(B = -A\) into (2): \[ A - (-A) + C = -1 \quad \Rightarrow \quad 2A + C = -1 \quad \Rightarrow \quad C = -1 - 2A \quad \text{(4)} \] Now substituting \(C\) from (4) into (3): \[ A - (-1 - 2A) = 2 \quad \Rightarrow \quad A + 1 + 2A = 2 \quad \Rightarrow \quad 3A = 1 \quad \Rightarrow \quad A = \frac{1}{3} \] Then substituting back to find \(B\) and \(C\): \[ B = -A = -\frac{1}{3} \] Substituting \(A\) into (4): \[ C = -1 - 2\left(\frac{1}{3}\right) = -1 - \frac{2}{3} = -\frac{5}{3} \] Now we have: \[ A = \frac{1}{3}, \quad B = -\frac{1}{3}, \quad C = -\frac{5}{3} \] Therefore, we can write the partial fraction decomposition as: \[ \frac{x^{3}-x+2}{(x - 1)(x^{2} + x + 1)} = \frac{1/3}{x - 1} + \frac{-\frac{1}{3}x - \frac{5}{3}}{x^{2} + x + 1} \] Or \[ = \frac{1}{3(x - 1)} - \frac{1}{3}\frac{x + 5}{x^{2} + x + 1} \] That's the final decomposition!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad