Mia Enterprises sells a product for \( \$ 90 \) per unit. The variable cost is \( \$ 40 \) per unit, while fixed costs are \( \$ 75,000 \). Determine the: a. Break-even point in sales units b. Determine the break-even point in sales units if the selling price increased to \( \$ 100 \) per unit \( \$ \) per unit units
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find the break-even point in sales units, we use the formula: \[ \text{Break-Even Point (units)} = \frac{\text{Fixed Costs}}{\text{Selling Price per Unit} - \text{Variable Cost per Unit}} \] **a.** For Mia Enterprises at a selling price of \( \$ 90 \): \[ \text{Break-Even Point} = \frac{75,000}{90 - 40} = \frac{75,000}{50} = 1,500 \text{ units} \] **b.** If the selling price increases to \( \$ 100 \): \[ \text{Break-Even Point} = \frac{75,000}{100 - 40} = \frac{75,000}{60} = 1,250 \text{ units} \] So, the break-even point is 1,500 units at a selling price of \( \$ 90 \) and 1,250 units at \( \$ 100 \).
