5. Explain how to sind the value for each limit a) \( \lim _{x \rightarrow-\infty}-\frac{2 x^{4}+8 x^{5}+7}{3 x^{5}+3 x^{3}-1} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the limit as \( x \) approaches \(-\infty\), we should identify the leading terms in both the numerator and denominator. In this case, the numerator \( -\frac{2x^4 + 8x^5 + 7}{3x^5 + 3x^3 - 1} \) can be simplified by dividing every term by \( x^5 \) (the highest power in the denominator). This gives us: \[ \lim_{x \rightarrow -\infty} -\frac{\frac{2}{x} + 8 + \frac{7}{x^5}}{3 + \frac{3}{x^2} - \frac{1}{x^5}} \] As \( x \) approaches \(-\infty\), the terms \(\frac{2}{x}\), \(\frac{7}{x^5}\), \(\frac{3}{x^2}\), and \(-\frac{1}{x^5}\) all approach zero. Therefore, the limit simplifies to: \[ -\frac{8}{3} \] So, the final answer is: \[ \lim _{x \rightarrow-\infty}-\frac{2 x^{4}+8 x^{5}+7}{3 x^{5}+3 x^{3}-1} = -\frac{8}{3} \] Now, you’ve got a handle on limits at infinity! If you need to tackle more tricky limits, consider analyzing behavior at extreme values and simplifying expressions—who knew math could be a smooth ride?
