1. Mr. Tsilatsila builds a fence around his rectangular vegetable garden of \( 8 \mathrm{~m}^{2} \). If the length is twice the breadth, determine the dimensions of Mr. Tsilatsila's vegetable garden.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the dimensions of Mr. Tsilatsila's vegetable garden, we can set up the problem using algebra. Let the breadth be \( b \) meters. Since the length is twice the breadth, we can express the length as \( 2b \). The area \( A \) of the rectangle can be written as: \[ A = \text{length} \times \text{breadth} = 2b \times b = 2b^2 \] We know the area is \( 8 \, \mathrm{m}^{2} \): \[ 2b^2 = 8 \] Dividing both sides by 2 gives us: \[ b^2 = 4 \] Taking the square root of both sides, we find: \[ b = 2 \, \mathrm{m} \quad \text{(breadth)} \] Now, substituting back to find the length: \[ \text{length} = 2b = 2 \times 2 = 4 \, \mathrm{m} \] Thus, the dimensions of Mr. Tsilatsila's vegetable garden are a breadth of \( 2 \, \mathrm{m} \) and a length of \( 4 \, \mathrm{m} \). Now he can grow those delicious veggies happily! 🌱🥕
