Pregunta
upstudy study bank question image url

Find the balance after 8 years if \( \$ 37400 \) is invested at \( 7 \% \) p.a. compounded annually.

Ask by Wagner Boone. in Australia
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The balance after 8 years is approximately \$64,260.16.

Solución

To find the balance after 8 years when $37400 is invested at 7% p.a. compounded annually, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{100} \right)^n \] where: - \( A \) is the amount after \( n \) years, - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate (in %), - \( n \) is the number of years. Given: - \( P = \$37400 \), - \( r = 7\% \), - \( n = 8 \) years. Substitute these values into the formula to find the balance after 8 years. Calculate the value by following steps: - step0: Calculate: \(37400\left(1+\frac{7}{100}\right)^{8}\) - step1: Add the numbers: \(37400\left(\frac{107}{100}\right)^{8}\) - step2: Simplify: \(37400\times \frac{107^{8}}{100^{8}}\) - step3: Rewrite the expression: \(100\times 374\times \frac{107^{8}}{100^{8}}\) - step4: Reduce the numbers: \(374\times \frac{107^{8}}{100^{7}}\) - step5: Rewrite the expression: \(2\times 187\times \frac{107^{8}}{100^{7}}\) - step6: Rewrite the expression: \(2\times 187\times \frac{107^{8}}{4^{7}\times 25^{7}}\) - step7: Rewrite the expression: \(2\times 187\times \frac{107^{8}}{2^{14}\times 25^{7}}\) - step8: Reduce the numbers: \(187\times \frac{107^{8}}{2^{13}\times 25^{7}}\) - step9: Multiply the fractions: \(\frac{187\times 107^{8}}{8192\times 25^{7}}\) The balance after 8 years when $37400 is invested at 7% p.a. compounded annually is approximately $64260.16.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the balance after 8 years with a principal amount of \( \$37400 \) invested at an interest rate of \( 7\% \) compounded annually, we can use the formula for compound interest: \[ A = P (1 + r)^n \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (\$ 37400). - \( r \) is the annual interest rate (decimal) (7% = 0.07). - \( n \) is the number of years the money is invested (8 years). Plugging in the values, we have: \[ A = 37400 \times (1 + 0.07)^8 \] Calculating the equation step-by-step: 1. Calculate \( 1 + 0.07 = 1.07 \) 2. Raise to the power of 8: \( 1.07^8 \approx 1.718186 \) 3. Multiply by the principal: \( A \approx 37400 \times 1.718186 \approx 64337.06 \) Thus, after 8 years, the balance will be approximately \( \$ 64337.06 \).

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad