Pregunta
upstudy study bank question image url

Find the final amount of money in an account if \( \$ 5,200 \) is deposited at \( 5.5 \% \) interest compounded semi-annually and the money is left for 6 years.

Ask by Watson Rose. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The final amount in the account after 6 years is approximately \$7,200.88.

Solución

To find the final amount of money in an account with compound interest, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. Given: - \( P = 5200 \) - \( r = 5.5\% = 0.055 \) - \( n = 2 \) (since the interest is compounded semi-annually) - \( t = 6 \) Now, we can substitute these values into the formula: \[ A = 5200 \left(1 + \frac{0.055}{2}\right)^{2 \times 6} \] Let's calculate the expression step by step. 1. Calculate \( \frac{r}{n} \): \[ \frac{0.055}{2} = 0.0275 \] 2. Calculate \( nt \): \[ 2 \times 6 = 12 \] 3. Now substitute these values into the formula: \[ A = 5200 \left(1 + 0.0275\right)^{12} \] 4. Calculate \( 1 + 0.0275 \): \[ 1 + 0.0275 = 1.0275 \] 5. Now raise \( 1.0275 \) to the power of \( 12 \): \[ (1.0275)^{12} \] 6. Finally, multiply by \( 5200 \). Let's perform the calculations. Calculate the value by following steps: - step0: Calculate: \(1.0275^{12}\) - step1: Convert the expressions: \(\left(\frac{411}{400}\right)^{12}\) - step2: Use the properties of exponents: \(\frac{411^{12}}{400^{12}}\) Calculate or simplify the expression \( 5200 * (1.0275^12) \). Calculate the value by following steps: - step0: Calculate: \(5200\times 1.0275^{12}\) - step1: Convert the expressions: \(5200\left(\frac{411}{400}\right)^{12}\) - step2: Simplify: \(5200\times \frac{411^{12}}{400^{12}}\) - step3: Rewrite the expression: \(400\times 13\times \frac{411^{12}}{400^{12}}\) - step4: Reduce the numbers: \(13\times \frac{411^{12}}{400^{11}}\) - step5: Multiply: \(\frac{13\times 411^{12}}{400^{11}}\) After performing the calculations, we find: 1. \( (1.0275)^{12} \approx 1.384784 \) 2. Now, we can calculate the final amount \( A \): \[ A \approx 5200 \times 1.384784 \approx 7200.88 \] Thus, the final amount of money in the account after 6 years is approximately **\$7,200.88**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the final amount in the account when compounded semi-annually, you can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money): \( \$ 5,200 \). - \( r \) is the annual interest rate (decimal): \( 5.5\% = 0.055 \). - \( n \) is the number of times that interest is compounded per year: \( 2 \) (semi-annually). - \( t \) is the number of years the money is left to grow: \( 6 \). Plugging in the values: \[ A = 5200 \left(1 + \frac{0.055}{2}\right)^{2 \cdot 6} \] \[ A = 5200 \left(1 + 0.0275\right)^{12} \] \[ A = 5200 \left(1.0275\right)^{12} \] \[ A = 5200 \times 1.348850 \] (approximately) \[ A \approx 7,007.23 \] So, the final amount of money in the account after 6 years is approximately \( \$ 7,007.23 \). --- Money management is a skill that can transform your financial future! By understanding the magic of compound interest, you can make your money work for you. Start with small savings and watch it grow over time, thanks to the power of compounding—like planting a money tree! In real-world terms, this type of account is perfect for long-term savings goals, especially if you want to build an emergency fund, save for a home, or plan for retirement. The earlier you start saving, the more you benefit from compounding interest. So, why wait? Dive into your financial journey today!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad