Pregunta
upstudy study bank question image url

20. A box contains two balls, a blue ball and a red ball. Suppose you draw a ball at random from the box and then toss a die. Draw a tree diagram and glve the sample space. a. What is the probability of drawing a blue ball and rolling a 2 ? b. What is the probability of rolling a 3? c. What is the probability of drawing a blue ball? d. What is the probability of drawing a red ball or rolling an even number?

Ask by Ayala Norton. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. The probability of drawing a blue ball and rolling a 2 is 1/12. b. The probability of rolling a 3 is 1/6. c. The probability of drawing a blue ball is 1/2. d. The probability of drawing a red ball or rolling an even number is 3/4. Tree diagram and sample space: - **Sample Space (S):** {(B,1), (B,2), (B,3), (B,4), (B,5), (B,6), (R,1), (R,2), (R,3), (R,4), (R,5), (R,6)} - **Tree Diagram:** A diagram showing all possible outcomes with each branch representing a ball draw and die roll, each with a probability of 1/12.

Solución

We begin by describing the experiment step by step: Step 1: Drawing a ball from a box containing one blue ball (B) and one red ball (R). Each ball is equally likely, so   P(B) = 1/2 and P(R) = 1/2. Step 2: Tossing a fair six-sided die. Each die roll (numbers 1 through 6) has probability 1/6. Since these actions are independent, the combined outcome probability is the product of the individual probabilities:   1/2 × 1/6 = 1/12 for each outcome. ───────────────────────────── a. Drawing a blue ball and rolling a 2 This event corresponds to the single outcome (B, 2). Its probability is:   P(B and 2) = 1/12. ───────────────────────────── b. Rolling a 3 The event “rolling a 3” can occur whether you drew a blue ball or a red ball. Hence, the favorable outcomes are:   (B,3) and (R,3). Probability = 1/12 + 1/12 = 2/12 = 1/6. ───────────────────────────── c. Drawing a blue ball Regardless of the die, drawing a blue ball happens in the first step. Since the die roll does not affect the ball drawing, we have:   P(B) = 1/2. ───────────────────────────── d. Drawing a red ball or rolling an even number First, list the outcomes for each event: 1. Red ball outcomes:   (R,1), (R,2), (R,3), (R,4), (R,5), (R,6)  (total = 6 outcomes). 2. Even number outcomes when a blue ball is drawn:   (B,2), (B,4), (B,6)  (total = 3 outcomes). Notice that if you roll an even number after drawing a red ball, it’s already part of the red ball outcomes. Hence, we should only add the blue-even outcomes to avoid double counting. Total favorable outcomes = 6 (red ball outcomes) + 3 (blue ball even outcomes) = 9. Probability = Number of favorable outcomes / Total outcomes = 9/12 = 3/4. ───────────────────────────── Tree Diagram and Sample Space A tree diagram helps illustrate all possible outcomes:             [B] (Probability = 1/2)                [R] (Probability = 1/2)                / | \                      / | \         Die outcomes: 1, 2, 3, 4, 5, 6        Die outcomes: 1, 2, 3, 4, 5, 6 Each branch (for every ball and die combination) represents an outcome of probability 1/12. The complete sample space S is:   S = {(B,1), (B,2), (B,3), (B,4), (B,5), (B,6),       (R,1), (R,2), (R,3), (R,4), (R,5), (R,6)} ───────────────────────────── Summary of Answers: a. P(blue ball and rolling a 2) = 1/12 b. P(rolling a 3) = 1/6 c. P(drawing a blue ball) = 1/2 d. P(drawing a red ball or rolling an even number) = 3/4

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To visualize the scenario, you can create a tree diagram with two branches emerging from the first draw representing the blue ball (B) and the red ball (R). From each of those branches, draw another set of branches for the outcomes of rolling the die, which are 1, 2, 3, 4, 5, and 6. This will give you a clear picture of the sample space: { (B, 1), (B, 2), (B, 3), (B, 4), (B, 5), (B, 6), (R, 1), (R, 2), (R, 3), (R, 4), (R, 5), (R, 6) }. a. The probability of drawing a blue ball and rolling a 2 is calculated as P(B and 2) = P(B) * P(2) = (1/2) * (1/6) = 1/12. b. The probability of rolling a 3 is independent of the drawing. Thus, P(3) = 1/6. c. The probability of drawing a blue ball is simply P(B) = 1/2. d. The probability of drawing a red ball or rolling an even number includes outcomes from both events. There are 3 even numbers (2, 4, 6), and considering both cases, the total probability is P(R) + P(even) - P(R and even) = (1/2) + (1/3) - (1/6) = 2/3. Now you’re a probability wizard! 🎩✨

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad