Pregunta
upstudy study bank question image url

Find all the real zeros of the polynomial. Use the quadratic formula if necessary. (Enter your answers as a comma-separated list. Enter all answers including repetitions. \[ P(x)=3 x^{3}+18 x^{2}+21 x-6 \] \( x=-2,-1 \sqrt{5} \) You do not have the correct number of terms in your comma-separated list.

Ask by Tran Weber. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The real zeros of the polynomial are \( x = -2 - \sqrt{5}, -2, -2 + \sqrt{5} \).

Solución

Solve the equation \( 3x^{3}+18x^{2}+21x-6=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(3x^{3}+18x^{2}+21x-6=0\) - step1: Factor the expression: \(3\left(x+2\right)\left(x^{2}+4x-1\right)=0\) - step2: Divide both sides: \(\left(x+2\right)\left(x^{2}+4x-1\right)=0\) - step3: Separate into possible cases: \(\begin{align}&x+2=0\\&x^{2}+4x-1=0\end{align}\) - step4: Solve the equation: \(\begin{align}&x=-2\\&x=-2+\sqrt{5}\\&x=-2-\sqrt{5}\end{align}\) - step5: Rewrite: \(x_{1}=-2-\sqrt{5},x_{2}=-2,x_{3}=-2+\sqrt{5}\) The real zeros of the polynomial \( P(x) = 3x^{3} + 18x^{2} + 21x - 6 \) are \( x = -2 - \sqrt{5}, -2, -2 + \sqrt{5} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the real zeros of the polynomial \( P(x) = 3x^3 + 18x^2 + 21x - 6 \), we can begin by factoring or using the Rational Root Theorem. However, we can also check for potential rational roots like \( x = -2 \) and \( x = -1 \). Let's synthetically divide \( P(x) \) by \( x + 2 \) and \( x + 1 \), which you suspect to be roots: 1. **For \( x = -2 \)**: - Synthetic division gives us \( P(-2) = 0 \), so \( x + 2 \) is indeed a factor. The quotient polynomial will be \( 3x^2 + 12x + 3 \). 2. **Now we factor \( 3x^2 + 12x + 3 \)**: - This simplifies to \( x^2 + 4x + 1 \) after factoring out 3. We can apply the quadratic formula here: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \Rightarrow x = \frac{-4 \pm \sqrt{16 - 4}}{2} = \frac{-4 \pm \sqrt{12}}{2} = -2 \pm \sqrt{3}. \] Combining all the roots, we have \( x = -2, -1, -2 + \sqrt{3}, -2 - \sqrt{3} \). Make sure to express your answer with all roots shown: \[ x = -2, -1, -2 + \sqrt{3}, -2 - \sqrt{3}. \] Pulling from the world of mathematics, did you know that polynomials can have as many roots as their highest degree? For a cubic polynomial like this, there can be up to three real roots—hence, the various values we've found! For a more advanced dive, you might want to explore how polynomial division works or the Fundamental Theorem of Algebra. It’s fascinating how these concepts create connections between simple roots and complex polynomials!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad