Pregunta
upstudy study bank question image url

A polynomial \( P \) is given. \[ P(x)=x^{3}-6 x^{2}-9 x+54 \] (a) Find all the real zeros of \( P \). (Enter your answers as a comma-separated list. Enter all answers including repetitions.) \( x= \) (b) Sketch the graph of \( P \).

Ask by Erickson Howell. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The real zeros of \( P(x) \) are \( x = -3, 3, 6 \). (b) To sketch the graph of \( P(x) = x^{3} - 6x^{2} - 9x + 54 \): 1. **Zeros**: The graph crosses the x-axis at \( x = -3, 3, 6 \). 2. **End Behavior**: As \( x \to -\infty \), \( P(x) \to -\infty \); as \( x \to +\infty \), \( P(x) \to +\infty \). 3. **Additional Points**: Calculate \( P(0) = 54 \) and other key points to determine the shape around the zeros. 4. **Draw the Graph**: Plot the zeros and key points, then sketch a smooth curve that reflects the end behavior and the behavior around the zeros. This will give you a clear representation of the polynomial's graph.

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(x^{3}-6x^{2}-9x+54=0\) - step1: Factor the expression: \(\left(x-6\right)\left(x-3\right)\left(x+3\right)=0\) - step2: Separate into possible cases: \(\begin{align}&x-6=0\\&x-3=0\\&x+3=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=6\\&x=3\\&x=-3\end{align}\) - step4: Rewrite: \(x_{1}=-3,x_{2}=3,x_{3}=6\) (a) The real zeros of the polynomial \( P(x) = x^{3} - 6x^{2} - 9x + 54 \) are: \[ x = -3, 3, 6 \] (b) Unfortunately, I cannot provide a sketch of the graph directly. However, I can guide you on how to sketch it: 1. **Identify the zeros**: The polynomial has real zeros at \( x = -3, 3, 6 \). These points will be where the graph intersects the x-axis. 2. **Determine the end behavior**: Since the leading term is \( x^3 \), as \( x \to -\infty \), \( P(x) \to -\infty \) and as \( x \to +\infty \), \( P(x) \to +\infty \). 3. **Evaluate the polynomial at key points**: You can calculate \( P(x) \) at points around the zeros to understand the shape of the graph. For example: - \( P(0) = 54 \) - \( P(-4) \) and \( P(2) \) can also be evaluated to see if the graph goes above or below the x-axis. 4. **Sketch the graph**: Plot the zeros and the points you calculated, then draw a smooth curve that reflects the end behavior and the behavior around the zeros. This will give you a good representation of the polynomial's graph.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the real zeros of the polynomial \( P(x) = x^{3} - 6x^{2} - 9x + 54 \), we can use the Rational Root Theorem or synthetic division to test potential rational roots. After trying several values, we can find that \( x = 3 \) is a root. By performing polynomial division or synthetic division of \( P(x) \) by \( (x - 3) \), we can factor the polynomial to find the other zeros: \( P(x) = (x - 3)(x^2 - 3x - 18) \). Next, we can solve \( x^2 - 3x - 18 = 0 \) using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). This leads to: 1. \( x = \frac{3 + \sqrt{81}}{2} = 8 \) 2. \( x = \frac{3 - \sqrt{81}}{2} = -2 \) Thus, the real zeros of \( P \) are \( x = 3, 8, -2 \). Now, to sketch the graph of \( P \), we note some key features: 1. The degree of the polynomial is odd, indicating that the ends of the graph will go in opposite directions (left will go down, right will go up). 2. The zeros we found will be the x-intercepts at \( x = 3, 8, -2 \). 3. The polynomial will reach a local maximum and minimum between these zeros, so we can evaluate \( P \) at a few points (e.g., \( P(0) = 54 \), positive indicating the graph starts high). 4. Sketch the curve, starting high (from the left), crossing \( (−2, 0) \), ascending to a peak before crossing at \( (3, 0) \), going down, then crossing again at \( (8, 0) \) and ending high (to the right). In summary, the real zeros of \( P \) are: \( x = -2, 3, 8 \). --- Polynomials have a rich history, dating back to ancient civilizations such as the Babylonians and Greeks, who used them for their mathematical principles in trade and astronomy. As math evolved, so did polynomials, becoming a vital tool in various fields—laying the groundwork for calculus and modern algebra! When dealing with polynomial roots, a common mistake is failing to check for repeated roots or extraneous solutions. Always perform a thorough verification of potential roots and consider using synthetic division or factoring to simplify polynomials correctly; it can save time and avert errors in calculations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad