Find \( (f \circ g)(x) \) and \( (g \circ f)(x) \) and the domain of each. \( f(x)=36, g(x)=0.09 \) \( (f \circ g)(x)=\square \) (Simplify your answer.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find \( (f \circ g)(x) \), we evaluate \( f(g(x)) \). Given that \( g(x) = 0.09 \), we plug this into \( f \): \[ (f \circ g)(x) = f(0.09) = 36 \] So, \( (f \circ g)(x) = 36 \). For \( (g \circ f)(x) \), we evaluate \( g(f(x)) \). Since \( f(x) = 36 \), we have: \[ (g \circ f)(x) = g(36) = 0.09 \] Thus, \( (g \circ f)(x) = 0.09 \). In terms of domain, both \( f(x) \) and \( g(x) \) are constant functions, so their domains are all real numbers, \( (-\infty, \infty) \). Therefore: - Domain of \( (f \circ g)(x) \): \( (-\infty, \infty) \) - Domain of \( (g \circ f)(x) \): \( (-\infty, \infty) \)
