Codculate the value of the fellowing without the use of calculater () \( \cos 75 \) क) \( \sin 70 \sin 10+\operatorname{cociocos} 70 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the value of \( \cos 75^\circ \), we can use the angle addition formula: \[ \cos(75^\circ) = \cos(45^\circ + 30^\circ) \] Using the formula \( \cos(A + B) = \cos A \cos B - \sin A \sin B \): \[ \cos(75^\circ) = \cos(45^\circ) \cos(30^\circ) - \sin(45^\circ) \sin(30^\circ) \] Substituting known values: \[ = \left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right) \] \[ = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4} \] Hence, \( \cos 75^\circ = \frac{\sqrt{6} - \sqrt{2}}{4} \). Now, examining your expression \( \sin 70 \sin 10 + \cos 70 \cos 10 \), using the cosine addition formula: \[ \sin 70 \sin 10 + \cos 70 \cos 10 = \cos(70 - 10) = \cos 60 \] Since \( \cos(60^\circ) = \frac{1}{2} \), we can conclude that \( \sin 70 \sin 10 + \cos 70 \cos 10 = \frac{1}{2} \). So, both expressions lead to interesting insights into cosine and sine functions!
