What is the greatest common factor of the terms of the polynomial: \( 6 x^{5}+14 x^{4}+10 x^{3} \) \( 2 x \) \( 2 x^{5} \) \( 2 x^{3} \) \( x^{3} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the greatest common factor (GCF) of the terms in the polynomial \( 6x^{5} + 14x^{4} + 10x^{3} \), we first need to identify the GCF of the coefficients 6, 14, and 10. The GCF of these numbers is 2. Next, we look at the variable part; the lowest power of \( x \) present in all terms is \( x^{3} \). Therefore, combining both the numerical and variable components, the GCF of the polynomial's terms is \( 2x^{3} \). Now, let's check the GCF of the other expressions provided. - For \( 2x \) and \( 2x^{5} \), the GCF is \( 2x \). - For \( 2x^{5} \) and \( 2x^{3} \), the GCF is again \( 2x^{3} \). - For \( x^{3} \), there's nothing additional since it's already simplified. In summary, evaluating all these expressions, the overall GCF of the polynomial terms and the other expressions listed is \( 2x^{3} \).
