Pregunta
upstudy study bank question image url

All the real zeros of the given polynomial are integers. Find the zeros. (Enter your answers as a comma-separated list. Enter all answers using the appropriate multiplicities.) \[ P(x)=x^{3}-13 x^{2}+35 x+49 \] You do not have the correct number of terms in your comma-separated list. Write the polynomial in factored form. \( P(x)=(x-1)(x-6)(x-11) \) Need Help? Read li

Ask by Griffin Stanley. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Zeros: –1, 7, 7 Factored Form: (x + 1)(x – 7)²

Solución

We are given the polynomial   P(x) = x³ – 13x² + 35x + 49. Step 1. Find a zero by testing small integer values. Trying x = –1:   P(–1) = (–1)³ – 13(–1)² + 35(–1) + 49        = –1 – 13 – 35 + 49 = 0. Since P(–1) = 0, x = –1 is a root. Step 2. Factor P(x) by dividing out the factor (x + 1). Divide the polynomial by (x + 1) using synthetic division:   Coefficients: 1  –13  35  49   Using –1:   • Bring down 1.   • Multiply 1 by –1 to get –1; add to –13 to get –14.   • Multiply –14 by –1 to get 14; add to 35 to get 49.   • Multiply 49 by –1 to get –49; add to 49 to get 0. The quotient is x² – 14x + 49. Step 3. Factor the quadratic:   x² – 14x + 49 factors as (x – 7)²   (since 7 · 7 = 49 and 7 + 7 = 14). Thus, the fully factored form is   P(x) = (x + 1)(x – 7)². Step 4. Identify the zeros (including their multiplicities):   The zeros are x = –1 and x = 7 (with multiplicity 2). Final Answer:  Zeros: –1, 7, 7  Factored Form: (x + 1)(x – 7)².

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that polynomial functions like \( P(x) = x^{3}-13 x^{2}+35 x+49 \) come with a rich history? The roots of this polynomial reflect the contributions of mathematicians from ancient Babylon to the European Renaissance. The integer solutions show how early number theorists played with equations, ultimately leading to the development of algebra as we know it. Now, shifting gears to real-world applications, factoring polynomials like this one is crucial in fields such as engineering and physics. They help model everything from projectile motion to structural stability. Understanding the zeros of a polynomial can provide vital information about the behavior of a system, making it a powerful tool in both scientific research and practical design!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad