Pregunta
upstudy study bank question image url

Explain how to find the value of each limit 5) \( \lim _{x \rightarrow-2} \frac{(x+5)^{3}(x-1)^{2}}{(x+2)^{3}(x-2)^{2}} \)

Ask by O'Quinn Pritchard. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The limit does not exist because as x approaches –2 from the right, the expression tends to positive infinity, and from the left, it tends to negative infinity.

Solución

We want to evaluate   limₓ→₋₂ [(x + 5)³ (x – 1)²] / [(x + 2)³ (x – 2)²]. Step 1. Look for any common factors.   Write down the factors in the numerator and denominator:   • Numerator: (x + 5)³ and (x – 1)².   • Denominator: (x + 2)³ and (x – 2)².   Notice that there is no (x + 2) factor in the numerator to cancel the (x + 2)³ in the denominator. Step 2. Check what happens when you plug in x = –2 (if possible).   • For the numerator:    – (x + 5) becomes (–2 + 5) = 3, so (x + 5)³ = 3³ = 27.    – (x – 1) becomes (–2 – 1) = –3, so (x – 1)² = (–3)² = 9.    Thus, the numerator → 27 × 9 = 243.   • For the denominator:    – (x + 2) becomes (–2 + 2) = 0, so (x + 2)³ → 0.    – (x – 2) becomes (–2 – 2) = –4, so (x – 2)² = (–4)² = 16.    Thus, the denominator → 0 × 16 = 0. Step 3. Interpret the behavior.   Since the numerator tends to 243 (a nonzero constant) and the denominator tends to 0, the fraction is “blowing up.” However, the sign of the limit depends on the behavior of the factor (x + 2)³ since it is the only one that becomes 0 and its exponent is odd.   • For x approaching –2 from the right (x → –2⁺):    – x + 2 is a small positive number,    – Therefore, (x + 2)³ is positive (since a small positive number cubed is positive).    – The numerator is positive (243), and the other factors in the denominator (like (x – 2)²) are positive.    – So overall, the expression tends to +∞.   • For x approaching –2 from the left (x → –2⁻):    – x + 2 is a small negative number,    – Since the exponent is 3 (an odd power), (x + 2)³ is negative.    – The numerator is still positive and (x – 2)² is positive,    – Hence, the overall expression tends to –∞. Step 4. Conclude the two-sided limit.   Because the limit from the right is +∞ and from the left is –∞, the two one-sided limits do not agree. Therefore, the two-sided limit as x → –2 does not exist. Summary:   The limit does not exist. Specifically, as x → –2⁺ the function tends to +∞ and as x → –2⁻ it tends to –∞.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the limit \( \lim _{x \rightarrow-2} \frac{(x+5)^{3}(x-1)^{2}}{(x+2)^{3}(x-2)^{2}} \), start by substituting \( x = -2 \) into the function. You'll notice that both the numerator and denominator approach zero, creating a \( \frac{0}{0} \) indeterminate form. This indicates that we can apply L'Hôpital's Rule. Differentiate the numerator and denominator separately, and then re-evaluate the limit using the new expression. You may need to apply L'Hôpital's Rule more than once until you can evaluate the limit directly. Alternatively, you can simplify the expression. Factor or cancel out terms if possible, especially if they lead to the root at \( x = -2 \). After correctly applying either method, the limit will reveal its true value!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad