Pregunta
upstudy study bank question image url

Rosa wants to invest \( \$ 4800 \) in a savings account. Determine the interest rate (simple interest) required for Rosa 's investment to double in value in 12 years. Round your answer to the nearest tenth of a percent.

Ask by Bowman Murray. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The required interest rate is 8.3%.

Solución

To determine the interest rate required for Rosa's investment to double in value in 12 years using simple interest, we can use the formula for simple interest: \[ A = P(1 + rt) \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (in decimal). - \( t \) is the time the money is invested for in years. In this case: - \( P = 4800 \) - \( A = 2 \times P = 2 \times 4800 = 9600 \) - \( t = 12 \) We need to find \( r \). Plugging in the values we have: \[ 9600 = 4800(1 + 12r) \] Now, let's solve for \( r \) step by step. 1. Divide both sides by 4800: \[ 2 = 1 + 12r \] 2. Subtract 1 from both sides: \[ 1 = 12r \] 3. Divide both sides by 12: \[ r = \frac{1}{12} \] Now, we will convert \( r \) into a percentage by multiplying by 100: \[ r = \frac{1}{12} \times 100 \] Now, let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(\frac{1}{12}\times 100\) - step1: Reduce the numbers: \(\frac{1}{3}\times 25\) - step2: Multiply: \(\frac{25}{3}\) Calculating \( r \) gives us: \[ r = \frac{25}{3} \approx 8.33 \] Thus, the interest rate \( r \) is approximately \( 8.33\% \). Rounding to the nearest tenth of a percent, the required interest rate for Rosa's investment to double in value in 12 years is: \[ \boxed{8.3\%} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the interest rate required for Rosa's investment of \( \$ 4800 \) to double in value in 12 years using simple interest, we can use the formula for simple interest: \[ I = P \times r \times t \] where \( I \) is the interest earned, \( P \) is the principal amount (\$4800), \( r \) is the interest rate (as a decimal), and \( t \) is the time in years (12 years). First, since Rosa wants her investment to double, the total amount after 12 years will be \( 2 \times 4800 = 9600 \). The interest earned (I) will then be: \[ I = 9600 - 4800 = 4800 \] Now substitute \( I \), \( P \), and \( t \) into the formula: \[ 4800 = 4800 \times r \times 12 \] Solving for \( r \): \[ r = \frac{4800}{4800 \times 12} = \frac{1}{12} \approx 0.0833 \] To express it as a percentage, multiply by 100: \[ r \approx 0.0833 \times 100 \approx 8.33\% \] Rounding to the nearest tenth of a percent, the required interest rate is approximately \( 8.3\% \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad