Proving trigonomeric identities \( \frac{1}{1-\sin x}-\frac{1}{1+\sin x}=\frac{2 \tan x}{\cos x} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To transform the left side into the right side, start by finding a common denominator for the fractions. The common denominator for \(1 - \sin x\) and \(1 + \sin x\) is \((1 - \sin x)(1 + \sin x)\). Combine the fractions: \[ \frac{(1 + \sin x) - (1 - \sin x)}{(1 - \sin x)(1 + \sin x)} = \frac{2\sin x}{1 - \sin^2 x} \] Utilizing the Pythagorean identity that \(1 - \sin^2 x = \cos^2 x\), we can rewrite the fraction: \[ = \frac{2\sin x}{\cos^2 x} \] Since \( \tan x = \frac{\sin x}{\cos x} \), this expression becomes: \[ = \frac{2 \tan x}{\cos x} \] And voilà! We have successfully proven the identity. One common mistake in proving trigonometric identities is neglecting to simplify expressions or misapplying Pythagorean identities. Always double-check your steps to ensure each transformation is valid. If you find yourself stuck, try rewriting in terms of sine and cosine or factor expressions to simplify the problem! If you are intrigued by trigonometric identities, there are plenty of resources online that delve deeper into advanced trigonometric techniques and their applications. Websites like Khan Academy or math-centric blogs often provide rich insights, while textbooks can offer structured learning paths with exercises to hone your skills. Don't be shy; diving deeper will only make you a trigonometric aficionado!
