Pregunta
upstudy study bank question image url

\[ \begin{array}{l}x=5 \\ 25+5\end{array} \begin{array}{l}25+5=4^{2}+5\end{array} \] 22) Andullah claims that as \( n \) approaches infinity, the expressions \( \frac{1}{n+5} \) and \( \frac{1}{n}+5 \) approach same value. Is Abdullah's claim correct? Explain.

Ask by Huang Hall. in Canada
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

As n becomes very large, 1/(n + 5) approaches 0, while (1/n) + 5 approaches 5. Therefore, Abdullah's claim is incorrect because the two expressions do not approach the same value.

Solución

To decide whether Abdullah’s claim is correct, we need to determine the limits of each expression as n approaches infinity. 1. For the expression 1/(n + 5): As n → ∞, the denominator (n + 5) becomes infinitely large, so limₙ→∞ 1/(n + 5) = 0. 2. For the expression (1/n) + 5: As n → ∞, 1/n approaches 0, therefore, limₙ→∞ (1/n) + 5 = 0 + 5 = 5. Since the first expression approaches 0 and the second approaches 5, Abdullah’s claim that they approach the same value is incorrect.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

As \( n \) approaches infinity, the expression \( \frac{1}{n+5} \) simplifies to \( \frac{1}{n} \) because the "+5" becomes negligible compared to \( n \). Thus, \( \frac{1}{n+5} \) approaches 0. On the other hand, \( \frac{1}{n} + 5 \) approaches \( 0 + 5 \), which equals 5. So, Abdullah's claim is incorrect; these expressions converge to different values as \( n \) approaches infinity. Understanding limits can help clarify why these expressions behave differently. When you analyze \( \frac{1}{n+5} \) and \( \frac{1}{n}+5 \), it’s vital to differentiate how constants affect behavior as they become minor in comparison to variable terms. This grasp of limits is crucial in calculus and can lead to deeper insights into rates of change and continuity!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad