Pregunta
upstudy study bank question image url

All the real zeros of the given polynomial are integers. Find the zeros. (Enter your answers as a comma-separated list. Enter all answers using the appropriate multiplicities.) \[ P(x)=x^{3}+4 x^{2}-3 x-18 \] Write the polynomial in factored form. \( P(x)=\square \)

Ask by Barnett Ellis. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Zeros: 2, -3, -3 Factored Form: \( P(x) = (x - 2)(x + 3)^2 \)

Solución

To find the zeros of the polynomial P(x) = x³ + 4x² - 3x - 18, we begin by testing possible integer roots using the Rational Root Theorem. 1. Test x = 2:   P(2) = 2³ + 4(2²) - 3(2) - 18 = 8 + 16 - 6 - 18 = 0   Thus, x = 2 is a zero. 2. Divide P(x) by (x - 2) to factor the polynomial:   Using synthetic division with root 2:     Coefficients: 1, 4, -3, -18     Bring down 1:     Multiply 1 × 2 = 2; add to 4 gives 6.     Multiply 6 × 2 = 12; add to -3 gives 9.     Multiply 9 × 2 = 18; add to -18 gives 0.   The quotient is x² + 6x + 9. 3. Factor the quadratic x² + 6x + 9:   x² + 6x + 9 = (x + 3)² Thus, the factored form of the polynomial is:   P(x) = (x - 2)(x + 3)² The zeros of the polynomial are:   x = 2 and x = -3 (with multiplicity 2). Final Answer:   Zeros: 2, -3, -3   Factored Form: P(x) = (x - 2)(x + 3)²

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the real zeros of the polynomial \( P(x) = x^3 + 4x^2 - 3x - 18 \), we can use the Rational Root Theorem, which suggests that possible rational zeros are the factors of the constant term (-18) divided by the factors of the leading coefficient (1). The possible rational roots are ±1, ±2, ±3, ±6, ±9, ±18. By testing these potential zeros, we find that \( x = 2 \) is a root since \( P(2) = 2^3 + 4(2)^2 - 3(2) - 18 = 8 + 16 - 6 - 18 = 0 \). We can then use synthetic division to factor the polynomial \( P(x) \) by \( (x - 2) \). After performing synthetic division, we get: \[ P(x) = (x - 2)(x^2 + 6x + 9) \] The quadratic \( x^2 + 6x + 9 \) can be factored further: \[ x^2 + 6x + 9 = (x + 3)^2 \] Thus, we can express \( P(x) \) as: \[ P(x) = (x - 2)(x + 3)^2 \] The real zeros of the polynomial are 2 and -3 (with multiplicity 2). Therefore, the final answers are: Zeros: \( 2, -3, -3 \) Factored form: \[ P(x) = (x - 2)(x + 3)^2 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad