Pregunta
upstudy study bank question image url

The Gray family wants to save money to travel the world. They plan to invest in an ordinary annuity that earns \( 2.4 \% \) interest, compounded quarterly. Payments will be made at the end of each quarten. How much money do they need to pay into the annuity each quarter for the annulty to have a total value of \( \$ 13,000 \) after 13 years? Do not round intermediate computations, and round your final answer to the nearest cent. If necessary, refer to the list of financial formulas. Hill

Ask by Marshall Medina. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The Gray family needs to pay approximately $213.77 into the annuity each quarter.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To determine how much the Gray family needs to invest quarterly in their annuity, we can use the future value of an ordinary annuity formula: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Where: - \( FV \) is the future value of the annuity (in this case, \( \$ 13,000 \)) - \( P \) is the payment amount per period (this is what we need to find) - \( r \) is the interest rate per period - \( n \) is the total number of payments Given that the annual interest rate is \( 2.4\% \) compounded quarterly, we convert it to a quarterly rate: \[ r = \frac{2.4\%}{4} = 0.006 \] Next, we calculate the total number of payments over 13 years, with payments made quarterly: \[ n = 13 \times 4 = 52 \] Now plug these values into the future value formula: \[ 13,000 = P \times \frac{(1 + 0.006)^{52} - 1}{0.006} \] Calculating \( (1 + 0.006)^{52} \): \[ (1.006)^{52} \approx 1.348850 \] So, substituting back gives: \[ 13,000 = P \times \frac{1.348850 - 1}{0.006} \] \[ 13,000 = P \times \frac{0.348850}{0.006} \] \[ 13,000 = P \times 58.14167 \] Now, solve for \( P \): \[ P = \frac{13,000}{58.14167} \approx 223.49 \] Thus, the Gray family needs to pay approximately \( \$ 223.49 \) into the annuity each quarter.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad