4.1 If \( 13 \sin \theta+5=0 \) and \( \tan \theta>0 \), determine \( 3 \cos \theta \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the equation \( 13 \sin \theta + 5 = 0 \), we first isolate \( \sin \theta \): \[ \sin \theta = -\frac{5}{13} \] Since \( \tan \theta > 0 \), \( \theta \) must be in either the first or third quadrant. However, \( \sin \theta \) is negative, so \( \theta \) must be in the third quadrant. Next, we can find \( \cos \theta \) using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting the value of \( \sin \theta \): \[ \left(-\frac{5}{13}\right)^2 + \cos^2 \theta = 1 \] \[ \frac{25}{169} + \cos^2 \theta = 1 \] \[ \cos^2 \theta = 1 - \frac{25}{169} = \frac{169}{169} - \frac{25}{169} = \frac{144}{169} \] Taking the square root gives: \[ \cos \theta = -\frac{12}{13} \] We take the negative root, since \(\theta\) is in the third quadrant. Now, we can find \( 3 \cos \theta \): \[ 3 \cos \theta = 3 \left(-\frac{12}{13}\right) = -\frac{36}{13} \] Thus, the value of \( 3 \cos \theta \) is \[ \boxed{-\frac{36}{13}} \]
