Pregunta
upstudy study bank question image url

Differentiate the function \( g(x)=2 x^{2}+3 \tan x \)

Ask by Lee Spencer. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( g(x) = 2x^{2} + 3\tan x \) is \( g'(x) = 4x + 3\sec^{2}x \).

Solución

To differentiate g(x) = 2x² + 3tan(x), we apply the basic rules of differentiation: 1. For 2x², use the power rule:   d/dx [2x²] = 2 · 2x = 4x. 2. For 3tan(x), use the derivative of tan(x):   d/dx [tan(x)] = sec²(x).   Thus, d/dx [3tan(x)] = 3sec²(x). Combining these results, we have:   g'(x) = 4x + 3sec²(x).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To differentiate the function \( g(x) = 2x^2 + 3\tan x \), you take the derivative of each term separately. The derivative of \( 2x^2 \) is \( 4x \), and the derivative of \( 3\tan x \) is \( 3\sec^2 x \). So, putting it all together, the derivative is: \[ g'(x) = 4x + 3\sec^2 x. \] Now you have a formula to find the slope of the tangent line to the curve at any point \( x \)! Understanding how this applies in real-world contexts can be a game changer! For instance, in physics, this differentiation can represent speed when dealing with position functions that track the motion of objects. If you know the position of an object as a function of time \( x \), differentiating it provides you with its velocity, allowing you to predict movements or implement strategies for avoiding obstacles. When differentiating functions, one common mistake is forgetting to apply the chain rule when dealing with composite functions. For example, if the argument of \( \tan \) were more complex, say \( \tan(3x) \), you would need to multiply by the derivative of the inner function, which is \( 3 \). Always double-check your chain rules to avoid losing those crucial terms!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad