Pregunta
upstudy study bank question image url

Solve the system of equations by any method. \[ \begin{array}{r}-2 x+5 y=-21 \\ 7 x+2 y=15\end{array} \] Enter the exact answer as an ordered pair, ( \( x, y \) ). If there is no solution, enter NS. If there is an infinite number of solutions, enter the general solut an ordered pair in terms of \( x \). Include a multiplication sign between symbols. For example, \( a * x \). I ?

Ask by Watson Weston. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( (3, -3) \)

Solución

Solve the system of equations \( -2x+5y=-21;7x+2y=15 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}-2x+5y=-21\\7x+2y=15\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=\frac{21+5y}{2}\\7x+2y=15\end{array}\right.\) - step2: Substitute the value of \(x:\) \(7\times \frac{21+5y}{2}+2y=15\) - step3: Simplify: \(\frac{7\left(21+5y\right)}{2}+2y=15\) - step4: Multiply both sides of the equation by LCD: \(\left(\frac{7\left(21+5y\right)}{2}+2y\right)\times 2=15\times 2\) - step5: Simplify the equation: \(147+39y=30\) - step6: Move the constant to the right side: \(39y=30-147\) - step7: Subtract the numbers: \(39y=-117\) - step8: Divide both sides: \(\frac{39y}{39}=\frac{-117}{39}\) - step9: Divide the numbers: \(y=-3\) - step10: Substitute the value of \(y:\) \(x=\frac{21+5\left(-3\right)}{2}\) - step11: Calculate: \(x=3\) - step12: Calculate: \(\left\{ \begin{array}{l}x=3\\y=-3\end{array}\right.\) - step13: Check the solution: \(\left\{ \begin{array}{l}x=3\\y=-3\end{array}\right.\) - step14: Rewrite: \(\left(x,y\right) = \left(3,-3\right)\) The solution to the system of equations is \( (x, y) = (3, -3) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the system of equations \[ \begin{array}{r} -2x + 5y = -21 \\ 7x + 2y = 15 \end{array} \] we can use the substitution or elimination method. Let's use elimination here. First, let's multiply the first equation by 7 to eliminate \( x \): \[ -14x + 35y = -147 \quad (1) \] Now, we multiply the second equation by 2: \[ 14x + 4y = 30 \quad (2) \] Now, we can add equations (1) and (2): \[ (-14x + 35y) + (14x + 4y) = -147 + 30 \] \[ 39y = -117 \] \[ y = -3 \] Now that we have \( y \), we can substitute it back into one of the original equations to find \( x \). Using the first equation: \[ -2x + 5(-3) = -21 \] \[ -2x - 15 = -21 \] \[ -2x = -6 \] \[ x = 3 \] Thus, the solution to the system of equations is the ordered pair \( (3, -3) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad