Pregunta
upstudy study bank question image url

If the numerator of a fraction is increased by 3 , the fraction becomes \( 3 / 4 \). If the denominator is decreased by 7 . the fraction becomes 1 . Determine the original fraction. Which of the following equations represents "If the numerator of a fraction is increased by 3 , the fraction becomes \( 3 / 4 \) "? (Hint cross products) \( 4 n+3=3 d \) \( 4 n+12=3 d \) \( 3 n+9=4 d \)

Ask by Chavez Rodriguez. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation representing "If the numerator of a fraction is increased by 3, the fraction becomes \( \frac{3}{4} \)" is \( 4n + 12 = 3d \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To solve the problem, let's denote the original fraction as \( \frac{n}{d} \), where \( n \) is the numerator and \( d \) is the denominator. When we increase the numerator by 3, we have: \[ \frac{n + 3}{d} = \frac{3}{4} \] Cross multiplying gives us: \[ 4(n + 3) = 3d \] Which simplifies to: \[ 4n + 12 = 3d \] Now let’s check the second condition: if the denominator is decreased by 7, it becomes 1. So: \[ \frac{n}{d - 7} = 1 \] This implies: \[ n = d - 7 \] Now we have two equations: 1. \( 4n + 12 = 3d \) 2. \( n = d - 7 \) Substituting equation 2 into equation 1 allows us to solve for \( n \) and \( d \). In essence, the best representation of the equation is \( 4n + 12 = 3d \) as it directly relates to the first condition of the numerator being increased by 3. For a fun fact, understanding fractions dates back thousands of years! The Egyptians were marvelous in the use of fractions, employing them extensively in trade and construction around 3000 BC. They innovatively represented them using unit fractions (like 1/2, 1/3) making mathematics truly fascinating! When tackling equations, a common mistake is neglecting to simplify before solving. Always check your equations—getting \( d \) isolated on one side can help avoid errors! For fractions, balancing changes in numerators and denominators can really pay off when you remember to keep your eyes peeled for simplifications along the way.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad