Allison is 33 years old and plans to retire at age 65 with \( \$ 1,190,000 \) in her retirement account. What amount would she have to set aside now in an investment paying \( 7 \% \) annual interest if the compounding is done daily (assume 365 days in a year)? The amount to be invested now is \( \$ \square \). (Round to the nearest cent as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find out how much Allison needs to set aside now to reach her retirement goal, we can use the formula for the present value of a future amount when compounding daily: \[ PV = \frac{FV}{(1 + \frac{r}{n})^{nt}} \] Where: - \(FV\) = future value (\$1,190,000) - \(r\) = annual interest rate (0.07) - \(n\) = number of compounding periods per year (365) - \(t\) = number of years until retirement (65 - 33 = 32 years) Substituting the values into the formula: \[ PV = \frac{1,190,000}{(1 + \frac{0.07}{365})^{365 \times 32}} \] Calculating further: 1. \(r/n = 0.07/365 \approx 0.00019178\) 2. \(nt = 365 \times 32 = 11,680\) 3. Calculate \((1 + 0.00019178)^{11,680}\) Using a scientific calculator or software to compute this: \[ (1 + 0.00019178)^{11,680} \approx 7.5072 \] Now substitute back into the PV formula: \[ PV = \frac{1,190,000}{7.5072} \approx 158,248.98 \] Thus, the amount to be invested now is approximately \( \$158,248.98 \).
