Pregunta
upstudy study bank question image url

Find the derivative of the function. \[ g(x)=\frac{\arcsin (2 x)}{x} \]

Ask by Cook Kelly. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( g(x) = \frac{\arcsin(2x)}{x} \) is: \[ g'(x) = \frac{2x}{x^2 \sqrt{1 - 4x^2}} - \frac{\arcsin(2x)}{x^2} \]

Solución

We start with the function   g(x) = arcsin(2x) / x. We can use the quotient rule for differentiation. Recall that if   g(x) = f(x) / h(x), then   g'(x) = [f '(x)h(x) – f(x)h '(x)] / [h(x)]². Here, let   f(x) = arcsin(2x)  and  h(x) = x. Step 1. Differentiate f(x): Since f(x) = arcsin(2x), we use the chain rule. The derivative of arcsin(u) is 1/√(1 – u²) multiplied by u′. Here u = 2x so u′ = 2. Therefore,   f '(x) = 2 / √(1 – (2x)²)        = 2 / √(1 – 4x²). Step 2. Differentiate h(x): Since h(x) = x, we have   h '(x) = 1. Step 3. Apply the quotient rule: Plugging everything into the quotient rule, we have   g'(x) = [ (2/√(1 – 4x²))·x – arcsin(2x)·1 ] / x² which simplifies to   g'(x) = (2x/√(1 – 4x²) – arcsin(2x)) / x². Thus, the derivative of the function is   g'(x) = (2x/√(1 – 4x²) – arcsin(2x)) / x². Note: The domain of the original function is constrained since we need |2x| ≤ 1 (meaning |x| ≤ 1/2) and x ≠ 0 due to the division by x.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the derivative of the function \( g(x) = \frac{\arcsin(2x)}{x} \), we will apply the quotient rule. The quotient rule states that if you have a function \( h(x) = \frac{u(x)}{v(x)} \), then the derivative \( h'(x) \) is given by: \[ h'(x) = \frac{u'v - uv'}{v^2} \] In this case, let \( u(x) = \arcsin(2x) \) and \( v(x) = x \). First, we need to find the derivatives \( u'(x) \) and \( v'(x) \): 1. The derivative \( u'(x) \) can be found using the chain rule: \[ u'(x) = \frac{1}{\sqrt{1 - (2x)^2}} \cdot 2 = \frac{2}{\sqrt{1 - 4x^2}} \] 2. The derivative of \( v(x) \) is straightforward: \[ v'(x) = 1 \] Now we can apply the quotient rule: \[ g'(x) = \frac{u'v - uv'}{v^2} = \frac{\left(\frac{2}{\sqrt{1 - 4x^2}}\right) \cdot x - \arcsin(2x) \cdot 1}{x^2} \] Simplifying this gives: \[ g'(x) = \frac{\frac{2x}{\sqrt{1 - 4x^2}} - \arcsin(2x)}{x^2} \] Thus, the derivative of the function \( g(x) = \frac{\arcsin(2x)}{x} \) is: \[ g'(x) = \frac{2x}{x^2\sqrt{1 - 4x^2}} - \frac{\arcsin(2x)}{x^2} \] And here is your final answer for the derivative of the given function!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad