Simplify \( 8+3\{x-2[x+5(x+3)]\} \) \( 33 x-82 \) \( -33 x+82 \) \( -33 x-82 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To simplify the expression \( 8 + 3\{x - 2[x + 5(x + 3)]\} \), we first need to work inside the curly brackets. 1. Start with the innermost expression: \( 5(x + 3) = 5x + 15 \). 2. Then, calculate \( x + 5(x + 3) = x + 5x + 15 = 6x + 15 \). 3. Now, focus on \( 2[x + 5(x + 3)] = 2(6x + 15) = 12x + 30 \). 4. Substitute this back into the curly brackets: \( x - (12x + 30) = x - 12x - 30 = -11x - 30 \). 5. Next, multiply by 3: \( 3(-11x - 30) = -33x - 90 \). 6. Finally add the 8: \( 8 + (-33x - 90) = -33x - 82 \). So the simplified expression is \( -33x - 82\). That's the final result!
