Pregunta
Factor. \( 81-(p-5)^{2} \) \( 81-(p-5)^{2}=\square \) (Simplify your answer. Type your answer in factored form.
Ask by Mann Howell. in the United States
Feb 24,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( 81 - (p - 5)^2 = (14 - p)(p + 4) \)
Solución
We start with the expression:
81 – (p – 5)²
Notice that 81 is the same as 9², so the expression is a difference of two squares:
9² – (p – 5)²
The difference of squares formula tells us that:
a² – b² = (a – b)(a + b)
Here, a = 9 and b = (p – 5). Applying the formula:
81 – (p – 5)² = (9 – (p – 5)) · (9 + (p – 5))
Now, simplify each factor:
1. The first factor:
9 – (p – 5) = 9 – p + 5 = 14 – p
2. The second factor:
9 + (p – 5) = 9 + p – 5 = p + 4
Thus, the fully factored form is:
(14 – p)(p + 4)
So, the final answer is:
81 – (p – 5)² = (14 – p)(p + 4)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To factor \( 81 - (p - 5)^{2} \), we can recognize this as a difference of squares. We have \( 81 \) which is \( 9^{2} \) and \( (p - 5)^{2} \). The difference of squares can be factored using the formula \( a^{2} - b^{2} = (a - b)(a + b) \). Here, \( a = 9 \) and \( b = (p - 5) \). Therefore, we can rewrite the expression as: \[ 81 - (p - 5)^{2} = (9 - (p - 5))(9 + (p - 5)) \] Simplifying this, we get: \[ (9 - p + 5)(9 + p - 5) = (14 - p)(p + 4) \] So, \( 81 - (p - 5)^{2} = (14 - p)(p + 4) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium