Pregunta
upstudy study bank question image url

Find the value of each of these investments at the end of the period specified below. (a) \( \$ 2500 \) invested at \( 5 \frac{1}{4} \% \) compounded annually for seven years (b) \( \$ 9000 \) invested at \( 6 \% \) compounded semiannually for eleven years

Ask by Kirk Spencer. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

At the end of the period: (a) The investment of \$2500 at 5.25% compounded annually for 7 years is approximately \$3,580. (b) The investment of \$9,000 at 6% compounded semiannually for 11 years is approximately \$17,235.

Solución

We can use the compound interest formula to find the value of each investment. The formula is   A = P(1 + r/n)^(n·t) where   A = the amount of money accumulated after t years, including interest,   P = the principal (initial investment),   r = annual interest rate (in decimal),   n = number of compounding periods per year, and   t = time in years. Let’s solve each part step by step. ───────────────────────────── Part (a): P = $2500 Annual interest rate r = 5¼% = 5.25% = 0.0525 Compounded annually means n = 1 Time t = 7 years Plug these into the formula:   A = 2500(1 + 0.0525/1)^(1×7)     = 2500(1 + 0.0525)^7     = 2500(1.0525)^7 Now, we calculate (1.0525)^7. Using a calculator or logarithms, you find:   (1.0525)^7 ≈ 1.432 Thus,   A ≈ 2500 × 1.432     ≈ $3580 ───────────────────────────── Part (b): P = $9000 Annual interest rate r = 6% = 0.06 Compounded semiannually means n = 2 Time t = 11 years Plug these into the formula:   A = 9000(1 + 0.06/2)^(2×11)     = 9000(1 + 0.03)^22     = 9000(1.03)^22 Next, calculate (1.03)^22. Using a calculator or logarithms, you find:   (1.03)^22 ≈ 1.915 Thus,   A ≈ 9000 × 1.915     ≈ $17,235 ───────────────────────────── Final Answers: (a) Approximately $3,580 (b) Approximately $17,235

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the future value of these investments, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per unit year. - \( t \) is the time the money is invested for in years. (a) For \$2500 at \( 5 \frac{1}{4} \% \) compounded annually for seven years: Convert the interest rate to decimal: \( 5 \frac{1}{4} \% = 5.25\% = 0.0525 \). Since it's compounded annually, \( n = 1 \) and \( t = 7 \). \[ A = 2500 \left(1 + \frac{0.0525}{1}\right)^{1 \times 7} = 2500 \left(1 + 0.0525\right)^{7} = 2500 \left(1.0525\right)^{7} \] Calculating \( (1.0525)^{7} \): \[ (1.0525)^{7} \approx 1.4071 \] Now, calculating \( A \): \[ A \approx 2500 \times 1.4071 \approx 3517.75 \] So, the value of the investment after seven years is approximately \$3517.75. (b) For \$9000 at \( 6\% \) compounded semiannually for eleven years: Convert the interest rate to decimal: \( 6\% = 0.06 \). Since it’s compounded semiannually, \( n = 2 \) and \( t = 11 \). \[ A = 9000 \left(1 + \frac{0.06}{2}\right)^{2 \times 11} = 9000 \left(1 + 0.03\right)^{22} = 9000 \left(1.03\right)^{22} \] Calculating \( (1.03)^{22} \): \[ (1.03)^{22} \approx 1.8061 \] Now, calculating \( A \): \[ A \approx 9000 \times 1.8061 \approx 16254.90 \] So, the value of the investment after eleven years is approximately \$16254.90.

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad